“(请记得收藏本站-一路高升范文网,以获取更多新鲜内容)黄金数”与优选法
两千多年前,古希腊数学家欧多克斯发现:如果将一条线(ab)分割成大小两段(ap、pb),若小段与大段的长度之比恰好等于大段的长度与全长之比的话,那么这一比值等于0.618…,用式子表示就是:(pb)/(ap)=(ap)/(ab)=0.618……。
有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.168…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。
建筑师们对数学0.168…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.168…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.168…处。艺术家们认为弦乐器的琴马放在琴弦的0.168…处,能使琴声更加柔和甜美。
数字0.168…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。优选法是一种求最优化问题的方法。如在炼钢时需要加入某种化学元素来增加钢材的强度,假设已知在每吨钢中需加某化学元素的量在1000—克之间,为了求得最恰当的加入量,需要在1000克与克这个区间中进行试验。通常是取区间的中点(即1500克)作试验。
然后将试验结果分别与1000克和克时的实验结果作比较,从中选取强度较高的两点作为新的区间,再取新区间的中点做试验,再比较端点,依次下去,直到取得最理想的结果。这种实验法称为对分法。但这种方法并不是最快的实验方法,如果将实验点取在区间的0.618处,那么实验的次数将大大减少。这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法。实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。因此大画家达•芬奇把0.618…称为黄金数。
推荐站内搜索:事业单位准考证打印入口、公务员考试题目、非主流空间日志、今天我当家作文、教师招聘考试试题及答案、河南二级建造师准考证打印、护士资格证成绩查询入口、250字日记、我成功了作文500字、特岗教师试题、