教学目标:
1、使学生能应用画正多边形解决实际问题;
2、会应用“口诀”画正五边形的近似图;
3、能对较复杂的几何图形进行分解,然后通过画正多边形进行组合.
4、通过解决实际问题培养学生会从实际问题中抽象出数学模型的抽象能力及用数学意识;
5、通过运用正多边形的有关计算和画图解决实际问题培养学生分析问题、解决问题的能力;
6、通过对民间正五边形近似画法依据的探索,培养学生探索问题的能力;
7、通过有关图形的分解与组合培养学生的观察能力、分解组合能力以及画图能力.
教学重点:
应用正多边形的计算与画图解决实际问题
教学难点:
从实际问题中抽象出数学模型,然后正确运用正多边形的有关计算,画图知识解决问题.
教学过程:
一、新课引入:
上节课我们学习了运用量角器等分圆周画正多边形和运用尺规画特殊的正多边形,这节课我们继续研究正多边形的画法在实际问题中的应用等.
二、新课讲解:
在前几课学习了正多边形的有关计算和画法的基础上系统复习本部分内容并会综合运用解决实际问题.本节有关“地基”问题的例题就是通过复习正方形画法进而画正八边形,并对正八边形进行有关计算.通过此例不仅复习了正多边形的画法、计算,而且复习了查三角函数表,解直角三角形的方法,更为重要的是培养了学生从实际问题中抽象出数学模型的能力,从而提高学生分析问题、解决问题的能力.通过正五边形的民间近似画法的教学弘扬民族文化,揭示其科学性,渗透实践出真知的观点.
上节课我们学习了正多边形的画法,哪位同学能叙述用量角器等分圆法画半径3cm的正十边形?(安排中等生回答:先画出半径3cm的圆⊙o,然后用量角器画出36°的中心角,然后依次画36°的中心角,或者用圆规量出36°中心角所对弦长,依次截取即得正十边形)出现误差积累应如何处理?(安排中等生回答:1)适当调节正十边形的边长,2)可能情况下,重新设计画图步骤,减少产生误差的机会)
安排五名学生上黑板分别画半径3cm的圆内接正六边形、内接正三角形、内接正十二边形、内接正方形、内接正八边形,其余学生在下面画,然后师生共同评价所画图形的准确性.
幻灯给出题目,如图7-152,有一个亭子,它的地基是半径为4m的正八边形,(1)用1∶200的比例尺画出地基平面图;(2)求地基的边长a8(精确到0.01m)和面积s8(精确到0.1m2)
哪位同学知道亭子的地基指的是哪个地方?(安排知道的学生回答)哪位同学记得,什么是比例尺?(安排中下生回答,
面图上正八边形的半径应是多少?(安排中下生回答:r=2cm)
请同学们画出这个地基平面图.
大家回忆一下,怎样求正八边形的边长?具体步骤是什么?(安排中等生回答:首先画出基本计算图,然后算出中心角的一半,∠aoc=22°30′.然后选三角函数)请同学们计算这个正八边形的边长.(a8≈3.06(m))
pn·rn),现在要求这个正八边形的面积,边长已求出,周长自然知,还需求边心距,哪位同学告诉我,求r8应选什么三角函数?(安排中下生回答:选∠aoc的余弦)请同学们求出r8来.(r8≈3.70(m))请同学们计算出这个地基的面积.(s8≈45.3(m2))
我国民间相传有五边形的近似画法,画法口诀是:“顶五九,八五两边分”,它的意义如图:(幻灯展示),如果正五边形的边长为10,作它的中垂线af,取af=15.4,在af上取fm=9.5,则am=5.9,过点m作be⊥af,在be上取bm=me=8.连结ab、bc、de、ea即可.
例 用民间相传画法口诀,画边长为20mm的正五边形.
分析:要画边长20mm的正五边形,关键在于计算出口诀中各部分的尺寸,由于要画的正五边形与口诀正五边形相似,所以要画的正五边形的各部分应与口诀正五边形各部分对应成比例,由于口诀给出的是正五边形的各部分的比例数,所以不妨设口诀正五边形的边cd=10mm.由已知知道要画正五边形的边c′d′=20mm,因此可知要画的正五边形与口诀正五边形的相似比为2∶1,因此只要将口诀正五边形的各部分尺寸×2即得要画的正五边形的各部分尺寸.请同学们算出各部分的尺寸,并按口诀画出正五边形a′b′c′d′e′(安排一中等生上黑板画,其余同学在练习本上画)
虽然这种画法是近似画法,但是这种画法的精确度却是很高的,哪位同学知道在五边形abcde中∠cad的度数是多少?(中上生回答:36°,因正五边形每一内角108°,ab=bc ∴∠bac=36°,同理∠dae=36°∴∠cad=36°)当然△cad为顶角36°的等腰三角形,为什么?(中等生回答:∵△abc≌aed(s.a.s),∴ac=ad.)前面
取2.24作近似值,大家计算ac等于多少?(16.2)ac≈16.2也可说ac
af≈15.4)刚才计算ac≈16.2,那么bm≈8.1,由于ab=10,请大家计算am又应等多少?(am≈5.9)刚才算出af≈15.4,am≈5.9,那么mf显然约为9.5.至此我们已将口诀中的所有数据的来源探索清楚,从而证明我国民间的这种正五边形的近似画法精确度还是很高的.
幻灯给出下列图案:
请同学们观察这两个图形是怎么画出来的,先看第一图形,哪位同学知道 的圆心和半径?(安排中上生回答: 中点是圆心,oa长是半径)同理 的圆心是 的中点, 的圆心是 的中点,哪位同学发现这三个圆心与a、b、c三点恰好是圆o的什么点?(安排中下生回答:六等分点)
请同学们画出这个图形.
请同学们观察第二个图形,花瓣与⊙o的交点恰是⊙o的什么点?
是半径).
请同学们画出这个几何图案.
三、课堂小结:
本节课我们复习了正多边形的画法和有关计算,并运用这些知识去解决实际问题,学习了民间画正五边形的近似画法并对其科学性进行了探讨,最后学习了分解与组合有关正多边形的几何图案.
四、布置作业
教材p.171中练习1;p.173中12;p.173中14.
推荐站内搜索:爱国故事读后感、江苏自考分数查询、2021语文高考答案、全国大学录取分数线表、范爱农读后感、怎么找到自己学校的考试题库、全国成人高考网上报名今年成人高考时间、教师考试试题及答案、暑假生活作文400字、