九年级数学下册《二次函数与一元二次方程的联系》教案(湘教版)九年级数学下册《二次函数与一元二次方程的联系》教案(湘教版)九年级数学下册《二次函数与一元二次方程的联系》教案(湘教版)

欢迎光临
我们一直在努力

九年级数学下册《二次函数与一元二次方程的联系》教案(湘教版)

【知识与技能】1.掌握二次函数图象与x轴的交点横坐标与一元二次方程两根的关系.2.理解二次函数图象与x轴的交点的个数与一元二次方程根的个数的关系.3.会用二次函数图象求一元二次方程的近似根.4.能用二次函数与一元二次方程的关系解决综合问题.【过程与方法】经历探索二次函数与一元二次方程的关系的过程,体会二次函数与方程之间的联系,进一步体会数形结合的思想.【情感态度】通过自主学习,小组合作,探索出二次函数与一元二次方程的关系,感受数学的严谨性,激发热爱数学的情感.【教学重点】①理解二次函数与一元二次方程的联系.②求一元二次方程的近似根.【教学难点】一元二次方程与二次函数的综合应用.一、情境导入,初步认识1.一元二次方程ax2+bx+c=0的实数根,就是二次函数y=ax2+bx+c,当 y=0 时,自变量x的值,它是二次函数的图象与x轴交点的 横坐标 .2.抛物线y=ax2+bx+c与x轴交点个数与一元二次方程ax2+bx+c=0根的判别式的关系:当b2-4ac<0时,抛物线与x轴 无 交点;当b2-4ac=0时,抛物线与x轴有 一 个交点;当b2-4ac>0时,抛物线与x轴有 两 个交点.学生回答,教师点评二、思考探究,获取新知探究1  求抛物线y=ax2+bx+c与x轴的交点例1 求抛物线y=x2-2x-3与x轴交点的横坐标.【分析】抛物线y=x2-2x-3与x轴相交时,交点的纵坐标y=0,转化为求方程x2-2x-3=0的根.解:因为方程x2-2x-3=0的两个根是x1=3,x2=-1,所以抛物线y=x2-2x-3与x轴交点的横坐标分别是3或-1.【教学说明】求抛物线与x轴的交点坐标,首先令y=0,把二次函数转化为一元二次方程,求交点的横坐标就是求此方程的根.探究2  抛物线与x轴交点的个数与一元二次方程的根的个数之间的关系思考:(1)你能说出函数y=ax2+bx+c(a≠0)的图象与x轴交点个数的情况吗?猜想交点个数和方程ax2+bx+c=0(a≠0)的根的个数有何关系?(2)一元二次方程ax2+bx+c=0(a≠0)的根的个数由什么来判断?

推荐站内搜索:选调生考试网、长征读后感、全国统一考研时间、自考院校、河南省教师资格证报名时间、预计2021年本科分数线是多少、河南自考成绩查询、国庆周记400字左右、安徽省高考成绩公布时间2021、2014成人高考分数线、

九年级数学下册《二次函数与一元二次方程的联系》教案(湘教版)
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:九年级数学下册《二次函数与一元二次方程的联系》教案(湘教版)
文章链接:https://678999.cn/34665.html
本站资源仅供个人学习交流,请于下载后24小时内删除,不允许用于商业用途,否则法律问题自行承担。

一路高升范文网

提供各类范文...

联系我们联系我们

登录

找回密码

注册