反比例函数及其图象反比例函数及其图象反比例函数及其图象

欢迎光临
我们一直在努力

反比例函数及其图象

反比例函数及其图象

教学设计示例1

教学目标 :

1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式;

2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质;

3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想;

4、体会数学从实践中来也到实际中去的研究、应用过程;

5、培养学生的观察能力,及数学地发现问题,解决问题的能力.

教学重点:

结合图象分析总结出反比例函数的性质;

教学难点 :描点画出反比例函数的图象

教学用具:直尺

教学办法:小组合作、探究式

教学过程 :

1、从实际引出反比例函数的概念

我们在小学学过反比例关系.比如:当路程S一定时,时间t与速度v成反比例

即vt=S(S是常数);

当矩形面积S一定时,长a与宽b成反比例,即ab=S(S是常数)

从函数的观点看,在运动变化的过程中,有两个变量可以分别看成自变量与函数,写成: (S是常数) (S是常数) 一般地,函数 (k是常数, )叫做反比例函数.

如上例,当路程S是常数时,时间t就是v的反比例函数.当矩形面积S是常数 时,长a是宽b的反比例函数.

在现实生活中,也有许多反比例关系的例子.可以组织学生进行讨论.下面的例子仅供

2、列表、描点画出反比例函数的图象 例1、画出反比例函数 与 的图象 解:列表

x

-6

-5

-4

-3

1

2

3

4

5

6

-1

-1.2

-1.5

-2

6

3

2

1.5

1.2

1

1

1.2

1.5

2

-6

-3

-2

-1.5

-1.2

1

说明:由于学生第一次接触反比例函数,无法推测出它的大致图象.取点的时候最好多取几个,正负可以对称着取分别画点描图

一般地反比例函数 (k是常数, )的图象由两条曲线组成,叫做双曲线.

3、观察图象,归纳、总结出反比例函数的性质

前面学习了三类基本的初等函数,有了一定的基础,这里可视学生的程度或展开全面的讨论,或在老师的引导下完成知识的学习.

显示这两个函数的图象,提出问题:你能从图象上发现啥有关反比例函数的性质呢?并能从解析式或列表中得到论证.(下列答案仅供参考)

(1) 的图象在第一、三象限.可以扩展到k >0时的情形,即k>0时,双曲线两支各在第一和第三象限.从解析式中,也可以得出这个结论:xy=k,即x与y同号,因此,图象在第一、三象限. 的讨论与此类似. 抓住机会,说明数与形的统一,也渗透了数形结合的数学思想办法.体现了由特殊到一般的研究过程. (2)函数 的图象,在每一个象限内,y随x的增大而减小; 从图象中可以看出,当x从左向右变化时,图象呈下坡趋势.从列表中也可以看出这样的变化趋势.有理数除法说明了同样的道理,被除数一定时,若除数大于零,除数越大,商越小;若除数小于零,同样是除数越大,商越小.由此可归纳出,当k>0时,函数 的图象,在每一个象限内,y随x的增大而减小. 同样可以推出 的图象的性质. (3)函数 的图象不经过原点,且不与x轴、y轴交.从解析式中也可以看出, .如果x取值越来越大时,y的值越来越小,趋近于零;如果x取负值且越来越小时,y的值也越来越趋近于零.因此,呈现的是双曲线的样子.同理,抽象出 图象的性质. 函数 的图象性质的讨论与次类似. 4、小结:

本节课我们学习了反比例函数的概念及其图象的性质.大家展开了充分的讨论,对函数的概念,函数的图象的性质有了进一步的认识.数学学习要求我们要深刻地理解,找出事物间的普遍联系和发展规律,能数学地发现问题,并能运用已有的数学知识,给以一定的解释.即数学是世界的一个部分,同时也隐藏在世界中.

5、布置作业       习题13.8   1-4教学设计示例2

反比例函数及其图像

一、素质教育目标

(一)知识教学点

1.使学生了解反比例函数的概念;

2.使学生能够根据问题中的条件确定反比例函数的解析式;

3.使学生理解反比例函数的性质,会画出它们的图像,以及根据图像指出函数值随自变量的增加或减小而变化的情况;

4.会用待定系数法确定反比例函数的解析式.

(二)能力训练点

1.培养学生的作图、观察、分析、总结的能力;

2.向学生渗透数形结合的教学思想办法.

(三)德育渗透点

1.向学生渗透数学来源于实践也反过来作用于实践的观点;

2.使学生体会事物是有规律地变化着的观点.

(四)美育渗透点

通过反比例函数图像的研究,渗透反映其性质的图像的直观形象美,激发学生的兴趣,也培养学生积极探求知识的能力.

二、学法引导

教师采用类比法、观察法、练习法

学生学习反比例函数要与学习其他函数一样,要善于数形结合,由解析式Lenovo到图像的位置及其性质,由图像和性质Lenovo比例系数k的符号.

三、重点·难点·疑点及解决办法

1.教学重点:反比例的概念、图像、性质以及用待定系数法确定反比例函数的解析式.因为要研究反比例函数就必须明确反比例函数的上述问题.

2.教学难点 :画反比例函数的图像.因为反比例函数的图像有两个分支,而且这两个分支的变化趋势也不同,学生初次接触,一定会感到困难.

3.教学疑点:(1)反比例函数为何与x轴,y轴无交点;(2)反比例函数的图像只能说在第一、三象限或第二、四象限,而不能说经过第几象限,增减性也要说明在第几象限(或说在它的每一个象限内).

4.解决办法:(1) 中隐含条件是 或 ;(2)双曲线的两个分支是断开的,研究函数的增减性时,要将两个分支分别讨论,不能一概而论.

四、教学步骤 

(一)教学过程 

提问:小学是否学过反比例关系?是怎样叙述的?

由学生先考虑及讨论一下.

答:小学学过:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做反比例的量,它们的关系叫做反比例关系.

看下面的实例:(出示幻灯)

1. 当路程s一定时,时间t与速度v成反比例;

2.当矩形面积S一定时,长a与宽b成反比例;

它们分别可以写成 (s是常数), (S是常数)写在黑板上,用以得出反比例函数的概念:(板书)

一般地,函数 (k是常数, )叫做反比例函数.

即在上面的例子中,当路程s是常数时,时间t就是速度v的反比例函数,能否说:速度v是时间t的反比例函数呢?

通过这个问题,使学生进一步理解反比例函数的概念,只要满足 (k是常数, )就可以.因此可以说速度v是时间t的反比例函数,因为 (s是常量).对第2个实例也一样.

练习一:教材P129中1  口答.P130  1

根据前面学习特殊函数的经验,研究完函数的概念,跟着要研究的是啥?

答:图像和性质.

通过这个问题,使学生对课本上给出的知识的发生、发展过程有一个明确的认识,以后

学生要研究其他函数,也可以按照这种方式来研究.

下面,我们就来看桓隼猓海ǔ鍪净玫疲?/P>

例1  画出反比例函数 与 的图像.

提问:1.画函数图像的关键问题是啥?

答:合理、正确地选值列表.

2.在选值时,你认为要注意啥问题?

答:(1)由于函数图像的特点还不清楚,多选几个点较好;

(2)不能选 ,因为 时函数无意义;

(3)选整数较好计算和描点.

这个问题中最核心的一点是关于 的问题,提醒学生注意.

3.你能不能自己完成这道题呢?

学生在练习本上列表、描点、连线,教师在黑板上板演,到连线时可暂停,让学生先连完线之后,找一名同学上黑板连线,然后就这名同学的连线加以评价、总结:

注意:(1)一般地,反比例函数 的图像由两条曲线组成,叫做双曲线;

(2)这两条曲线不相交;

(3)这两条曲线不限延伸,不限靠近x轴和y轴,但永不会与x轴和y轴相交.

关于注意(3)可问学生:为啥图像与x和y轴不相交?

通过这个问题既可加深学生对反比例函数图像的记忆,也可培养学生思维的灵活性和深刻性.

再让学生观察黑板上的图,提问:

1.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎么样变化?

2.当 时,双曲线的两个分支各在哪个象限?在每个象限内,y随x的增大怎么样变化?

这两个问题由学生讨论总结之后回答,教师板书:

对于双曲线(1)当 :(1)当 时,双曲线的两分支位于一、三象限,y随x的增大而减少;(2)当 时,双曲线的两分支位于二、四象限,y随x的增大而增大. 3.反比例函数的这一性质与正比例函数的性质有何异同?

通过这个问题使学生能把学过的相关知识有机地串联起来,便于记忆和应用.

练习二:教材P129中2由学生在练习本上完成,教师巡回指导.P130中2、3填在书上

上面,我们讨论了反比例函数的概念、图像和性质,下面我们再来看一个不同类型的例题:(出示幻灯)

例2已知y与 成反比例,并当 时, ,求 时,y的值.

用提问的方式对此题加以分析:

(1)y与 成反比例是啥含义?

由学生讨论这一问题,最后归结为根据反比例函数的概念,这句话说明了: .

(2)根据这个式子,能否求出当 时,y的值?

(3)要想求出y的值,必须先知道哪个量呢?

(4)怎么样才能确定k的值?用啥条件?

答:用待定系数法,把 时 代入 ,求出k的值.

(5)你能否自己完成这道例题:

由一名同学板演,其他同学在练习本上完成.

例3   已知: , 与x成正比例, 与x成反比例,当 时, 时, ,求y与x的解析式.

分析:一定要先写出y与x的函数表达式 ,

要用x分别把 , 表示出来得 ,

要注意 不能写成k,∴

解:设 ,

.

由题意得

∴ .

(二)总结、扩展

教师提问,学生思考回答:

1.啥是反比例函数?

2.反比例函数的图像是啥样的?

3.反比例函数 的性质是啥?

4.命题方向及题型设置,反比例函数也是中考命题的主要考点,其图像和性质,以及其函数解析式的确定,常以填空题、选择题出现,在低档题中,近两年各省、市的中考试卷中出现不少将反比例函数与一次函数、几何知识、三角知识等综合编拟的解答题,丰富了压轴题的形式和内容.

五、布置作业 

1.教材P130中4,5,6

2.选做:P130中B1,2

六、板书设计 

13.8反比例函数及其图像

引例:(1)例1: 例2: 例3:

(2)

1.反比例函数:

2.反比例函数的性质

探究活动

已知:如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A、B两点,与y轴交于点C,与x轴交于点D。 。

(1)求反比例函数的解析式;

(2)设点A的横坐标为m, 的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;

(3)当 的面积等于 时,试判断过A、B两点的抛物线在x轴上截得的线段长能否等于3。如果能,求此时抛物线的解析式;如果不能,请说明理由。

解:(1)过点B作 轴于点H。

在Rt 中,

由勾股定理,得

也 ,

∴  点B(-3,-1)。

设反比例函数的解析式为

∵  点B在反比例函数的图像上,

∴  反比例函数的解析式为 。

(2)设直线AB的解析式为 。

由点A在第一象限,得 。

也由点A在函数 的图像上,可求得点A的纵坐标为 。

∵  点B(-3,-1),点 ,

∴    解关于 、 的方程组,得

∴  直线AB的解析式为 。

令  。

求得点D的横坐标为 。

过点A作 轴于点G

由已知,直线经过第一、二、三象限,

∴  ,即 。

由此得 

∴  。

即  。

(3)过A、B两点的抛物线在x轴上截得的线段长不能等于3。

证明如下:

由 ,

得 

解得 。

经检验, 都是这个方程的根。

∴  不合题意,舍去。

∴  点A(1,3)。

设过A(1,3)、B(-3,-1)两点的抛物线的解析式为 。

∴    由此得

即  。

设抛物线与x轴两交点的横坐标为 。

则 

令 

则  。

即  。

整理,得  。

∴  方程 无实数根。

因此过A、B两点的抛物线在x轴上截得的线段长不能等于3。

推荐站内搜索:好词好句好段摘抄大全公务员面试题库、世界上最恐怖的作文、教师资格证面试成绩查询时间、教师资格证考试时间、教室资格证报名和考试时间、中学周记100000000000字作文、福州自考成绩查询、心情日志大全、

反比例函数及其图象
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:反比例函数及其图象
文章链接:https://678999.cn/144861.html
本站资源仅供个人学习交流,请于下载后24小时内删除,不允许用于商业用途,否则法律问题自行承担。

一路高升范文网

提供各类范文...

联系我们联系我们

登录

找回密码

注册