解方程(精选12篇)解方程(精选12篇)解方程(精选12篇)

欢迎光临
我们一直在努力

解方程(精选12篇)

解方程(精选12篇)

解方程 篇1

  (一)教学目标:

  (1)让学生初步理解“方程的解”、“解方程”的含义以及“方程的解”和“解方程”之间的联系和区别。

  (2)初步理解等式的基本性质,能用等式的性质解简易方程。

  (3)关注由具体到一般的抽象概括过程,培养学生初步的代数思想。

  (4)重视良好书写习惯的培养。培养学生自觉检验的习惯。

  (二)教学重、难点:

  利用天平平衡的道理理解比较简单的方程的办法。

  (三)教学过程:

  一、 演示操作,提出目标

  师:(天平演示)老师在天平的左边放了一杯水,杯重100克,水重x克,一杯水重多少?(100+x)克

  师:在天平的右边放了多少砝码,天平保持平衡呢?(教师边讲边操作100克、200克、250克)

  师:请你根据图意列一个方程。100+x=250

  师:这个方程怎么解呢?有啥问题我们要研究呢?

  (1) 运用等式性质把x等于多少求出来。

  (2) “解方程”和“方程的解”有啥区别。

  [设计意图:从复习天平保持平衡的道理入手,引出学习目标,引导学习质疑,有利于激发学生积极探究、深入学习的积极性。]

  二 展示成果,理解归纳

  (一)小组内个人展示

  1.学生自学课本例1、例2,并完成“做一做”。(教师深入指导,收集信息)

  2.小组内互相交流、讲评。

  学生:(1):可以用250-100=150,所以x=150.

  学生;(2):因为100+150=250,所以x=150

  学生:(3):我是这样想的,假如方程的两边同时减去100,就能得出x=150

  学生演示:我在天平的左边拿走一个重100克空杯子,在天平的右边拿走100克的砝码,天平保持平衡。为:100+x-100=250-100就可以求出未知数x的值是多少?x=150

  师:是的,同学们的想法是正确的,方程左右两边同时减100,就能得出x=150。

  师:根据刚才的实验,我们来认识两个新的概念———“方程的解”和“解方程”。

  师: 指着方程100+x=250说:“x=150是这个方程的解。

  100+x=250    100+x-100=250-100

  指着方框说:这是求方程的解的过程,叫解方程。

  (二)全班展示(以小组为单位进行)

  1、算法展示  

  a:     ;    x+3=9                            b:         3 x=18

  解:x+3-3=9-3                               解:3 x ÷3=18÷3

  x=6                                          x=6

  c、方程的检验办法。

  [设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

  2、对学生在自主学习中的出现的错例展示。如:书写格式等。

  三、 激发冲突,验算结果(把这个环节融入学生展示中)

  师:你发现“方程的解”和“解方程”有啥不同吗?

  师:在解方程的过程要注意啥?

  师:这个方程会解。我们怎么知道x=6一定是以上x+3=9和3 x=18方程的解呢?

  师:怎么样验算?让学生说出过程。(分别说出以上两方程的验算过程。)

  师:以后解方程时,要求检验的,要写出检验过程;没有要求检验的,要进行口头检验,要养成口头检验的习惯。力求计算准确。

  [设计的意图:自学思考汇报交流既有利于每个学生的自主探索,保证个性发展,也有利于教师考察学生思维的合理性和灵活性,考察学生是否能用清晰的数学语言表达自己的观点。]

  四 拓展知识外延

  1  判断题

  x=3是方程5x=15的解。(      )

  x=2是方程5x=15的解。(      )

  2  考考你的眼力,能否帮他找到错误所在呢?

  x+1.2=4                 x+2.4=4.6

  x+1.2-1.2=4-1.2                  =4.6-2.4

  x=2.8                    =2.2

  3  填空题

  x+3.2=4.6

  x+3.2○( )=4.6○( )

  x=(  )

  4  将课本59页做一做的第1题的左边一小题写在单行纸上。

  [设计意图:游戏练习形式有趣,有利于激发学生的学习兴趣,活跃课堂气氛。让学生在轻轻松松中,及时有效地巩固强化概念。]

解方程 篇2

  教学目标:1、学会利用等式性质1解方程; 2、理解移项的概念; 3、学会移项。 教学重点:利用等式性质1解方程及移项法则; 教学难点:利用等式性质1来解释方程的变形。 教学准备: 1、投影仪、投影片。 2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。 教学过程:(一)引入新课: 1、  上节课的想一想引入新课:等式和方程之间有啥区别和联系? 方程是等式,但必须含有未知数; 等式不一定含有未知数,它不一定是方程。 2、下面的一些式子是否为方程?这些方程也有何特点? ①    5x+6=9x②3x+5③7+5×3=22④4x+3y=2 由学生小议后回答:①、④是方程。 分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。 我们先来研究最简单的(只含有一个未知数的)的一元一次方程。 3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。 注意:一次方程可以含有两个或两个以上的未知数:如上例的④。 4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。 5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答) ①    2x+3=11②y2=16③x+y=2④3y-1=4y 6、啥叫方程的解?怎么样解方程? 关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究怎样求一元一次方程的解(点出课题)利用等式性质1解一元一次方程 (二)、讲解新课: 1、  等式性质1: 出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。 强调关键词:"两边"、"都"、"同"、"等式"。 2、  利用等式性质1解方程:                 x+2=5 分析:要把原方程变形成x=?只要把方程两边同时减去2即可。 注意: 解题格式。 例1 解方程5x=7+4x 分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。 (解略) 解完后提问:怎样检验方程时的计算有没有错误?(由学生回答) 只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验) 观察前面两个方程的求解过程:      x+2=5                         5x=7+4x x=5-2                       5x-4x=7                                            思考:⑴把+2从方程的一边移到另一边,发生了啥变化?       ⑵把+4x从方程的一边移到另一边,也发生了啥变化?(符号改变) 3、  移项: 从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。 注意:①移项要变号;       ②移项的实质:利用等式性质1对方程进行变形。 例2 解方程:3x+4=2x+7 解:移项,得3x-2x=7-4,         合并同类项,得x=3。 ∴x=3是原方程的解。 归纳:①格式:解方程时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项; ②解方程与计算不同:解方程不能写成连等式;计算可以写成连等式; ③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。 练习:书本105页  1(口答),2(板演),想一想。 (三)、课堂小结: ①啥是一次方程,一元一次方程? ②等式性质1(找关键词); ③移项法则; ④应用等式性质1的注意点(例2归纳的三条)。 (四)、布置作业:见作业本。

  §5.2解方程(2)教学目标    1. 通过分析具体问题中的数量关系,了解到解方程作为运用方程解决实际问题的需要.正确理解和使用乘法分配律和去括号法则解方程.     2. 领悟到解方程作为运用方程解决实际问题的组成部分.     3. 进一步体会同一方程有多种解决办法及渗透整体化一的数学思想.     4. 培养学生热爱数学,独立思考,与合作交流的能力,领悟数学来于实践,服务于实践. 教学重点: 正确去括号解方程 教学难点: 去括号法则和分配律的正确使用. 教学设计

  教师活动

  学生活动

  说明

  教师引入 (读教材156页引例),教师引导学生根据画面内容探讨解决问题的办法.针对学生情况,如有困难教师直接讲解.    如果设1听果奶x元,那么可列出方程4(x十0.5)+x=20-3 教师组织学生讨论 教材“想一想”中的内容①首先鼓励学生通过独立思考,抓住其中的等量关系:买果奶的钱+买可乐的钱=20-3,然后鼓励学生运用自己的办法列方程并解释其中的道理.     出示例题3并引导学生探讨问题的解决办法.     引导学生对自己所列方程的解的实际意义进行解释.     出示随堂练习题,鼓励学生大胆互评.     出示例题4,教师首先鼓励学生独立探索解法,并互相交流.然后引导学生总结,此方程既可以先去括号求解,也可以视作关于(x-1)的一元一次方程进行求解.(后一种解法不要求所有学生都必须掌握.)     出示随堂练习题.     出示自编练习题:下面方程的解法对不对?如果不对应怎么样改正? ①解方程: 2(x+3)--5(1--x)=3(x-1) ②解方程:       6(x+8)一6=0     教师给予评价:     教师引导学生做出本节课小结.     布置作业:填写成长记录卡及课本158页习题 ①学生观看画面:两名同学到商店买饮料的情景. ②自主完成问题. 1、学生回答问题(1)用自己的语言表述理由. 2、小组内交流各自所列的方程. ①学生研讨并交流各自解决问题的过程. ②学生独立完支”想一想”中的问题(2). ①独立完成随堂练习. ③四名同学板演. ③纠正板演中的错误并总结注意事项. 1、自主完成例题 2、小组内交流各自解方程的办法. 3、总结数学思想. ①独立完成练习题. ②同桌互相检查. ①小组间比赛找错误. ②讨论交流各自看法. ③选代表说出错误的原因,并总结解本节所学方程的注意事项. 1、做出本节课小结并交流. 2、说出自己的收获。    让学生感知生活,体会数学与现实生活的联系,激起学生的学习兴趣.   不限制办法拓展学生思维虚拟主机,进一步提高学生分析问题解决问题的能力,   调动学生积极参与的积极性,体会数学的应用价值.   通过学习交流,思维方面的沟通乃至思维碰撞达到共同提高的目的.  巩固教学内容.   一题多解,培养学生发散思维,初步渗透将(x-l)作为一个整体的思想. 巩固教学内容. 培养学生思维的批判性和深刻性,养成良好的学习习惯. 培养学生归纳总结的能力. 巩固教学内容.

  §5.2解方程(3)教学目标    1. 经历解方程基本思路是把“复杂”转化为“简单”,把“新”转化为“旧”的过程.进一步理解并掌握怎样去分母的解题办法.     2. 通过解方程时去分母过程,体会转化思想.     3. 进一步体会解方程办法的灵活多样.培养解决不同问题的能力.     4. 培养学生自觉反思求解和自觉检验方程的解是否正确的良好习惯,团结合作的精神. 教学重点    解方程时怎样去分母. 教学难点    解方程时怎样去分母. 教学设计

  教师活动

  学生活动

  说明

  教师用小黑板出示一组解方程的练习题.     解方程     1、8=7-2y     2、5x-2=7x+8     3、4x-3(20-x)=3     4、-2(x-2)=12     (根据学生做题情况,教师给予评价). 出示例题7,鼓励学生到黑板板演,教师给予评价。 针对学生的实际,教师有目的引导学生怎样去掉分母.去分母时要引导学生规范步骤,准确运算.     组织学生做教材159页“想一想”,鼓励并引导学生总结解一元一次方程有哪些步骤.     出示例题6,并鼓励学生灵活运用解一元一次方程的步骤解方程.     教师给予评价.     出示快速抢答题:有几处错误,请把它们—一找出来并改正. 见教参p159 教师给予评价. 出示随堂练习题(根据学生情况做部分题或全部题).     教师引导学生总结本节的学习内容及办法. 布置作业:填写成长记录卡及课本160页习题5—5.1、自主完成解题. 2、同桌互批. 3、哪组同学全对人数多.     一名同学板演,其余同学在练习本上做. 分组讨论、合作交流得出结论:方程两边都乘以所有分母的最小公倍数去掉分母. ①先自己总结. ②互相交流自己的结论,并用语言表述出来. ①自主完成解方程 ②互相交流自己的结论,并用语言表述出来. ③自觉检验方程的解是否正确. (选代表到黑板板演). ①学生抢答. ②同组补充不完整的地方. ③交流总结方程变形时容易出现的错误. ①独立完成解方程. ②小组互评,评出做得好的同学. ①做出本节课小结共交流. ②说出自己的收获及最困惑的地方温故将知新.     激起学生的学习热情.     巩固所学知识为去分母做铺垫. 通过组内交流、合作,达到团结协作精神.     培养学生归纳、概括及语言表达能力.     把“复杂”转化为“简单”,把“新”转化为“旧”的过程,体会转化思想.   培养学生良好的学习习惯.     培养学生思维的批判性和深刻性. 巩固教学内容. 培养学生归纳总结的能力及语言表述的能力. 巩固所学知识.

解方程 篇3

  教学目标:  

  1、初步学会怎样利用方程来解应用题  

  2、能比较熟练地解方程。  

  3、进一步提高学生分析数量关系的能力。  

  教学重难点:  

  找出题中的等量关系,并根据等量关系列出方程。  

  教学过程:  

  一创设情景,提出目标  

  1:出示洪泽湖的图片——洪泽湖是我国五大淡水湖之一,位于江苏西部淮河下游,景色优美,物产丰富。但每当上游的洪水来临时,湖水猛涨,给湖泊周围的人民的生命财产带来了危险。因此,密切注视水位的变化情况,保证大坝的安全十分重要,如果湖水到了警戒水位的高度,就要引起高度警惕,超出警戒水位越多,大坝的危险就越大。下面,我们来就来看一则有关大坝水位的新闻。谁来当主持人,为大家播报一下。 

  “今天上午8时,洪泽湖蒋坝水位达14.14m,超过警戒水位0.64m.”  

  2、我们结合这幅图片来了解警戒水位、今日水位,及其关系。  

  3、提出学习目标:同学们能解决这个问题吗?你还想知道啥?

  (1)根据已知条件,找出题目中的数量关系。  

  (2)根据具体找出的数量关系列出方程,并正确解方程。  

  【设计意图:从生活实例激发学生的学习兴趣。简洁提出目标让学生明白知识点。】  

  二展示成果,激发冲突  

  1、学生独立解决例3、例4,小组内个人展示。  

  小组内展示内容主要有例3、例4:  

  (1)根据刚才所了解的信息,这个问题中有哪几个关键的数量呢?(警戒水位、今日水位、超出部分)  

  (2)它们之间有哪些数量关系呢?  

  2、全班展示  

  (1)第一种,学生根据的是“警戒水位+超出部分=今日水位”这一数量关系(由于左右相等,也称等量关系)所得到的:x+0.64=14.14 

  引导质疑:还有不同的办法列方程解吗?(以此引出第二、第三种办法: 14.14﹣x= 0.64与14.14﹣0.64=x)  

  学生:第二种,可以肯定学生所列的方程是正确的,但方程不容易解,为啥呢?因为x是被减去的。  

  学生:第三种,可让学生让算术解法与之作比较,让其发现,大同小异,因此,在列方程的过程中,通常不会让方程的一边只有一个x。 

  师:在解决问题中,我们是怎么样来列方程的?(将未知数设为x,再根据题中的等量关系列出方程。)  

  (2)展示例4,其他学生自由提出疑问,教师辅导解释。  

  【设计意图:教师始终把学生放在主体地位,为学生提供了一个自己去想去说,去回味知识掌握过程的舞台,这样将更有助于学生掌握正确的学习办法,总结失败原因,发扬成功经验,培养良好的学习习惯。】 

  三 拓展延伸 

  1:p61页“做一做”的题目 

  2:独立完成练习十一中的第6、8、9题。

  【设计意图:通过联系,强化学生对知识的系统化,及时有效地巩固知识】。

解方程 篇4

  年级(小五) 供稿(奥赛组) 列方程解应用题

  知识网络

  列方程解应用题最关键是前两步:设未知数和列方程。有的同学说的部分不是篇幅很长么,为啥不是关键部分呢?其实,只要仔细观察一下,就会发现,虽然篇幅很长,但只要注意到符号变化、分配律等基本运算技巧,解的过程是较容易掌握的。相反,前两步篇幅虽然短,但列方程解应用题的精华和难点却大部分集中在这里,需要用以体会。

  一般地,设啥量为未知数,最简单明了的想法是设所求为x(复杂的题目有时要采取迂回战术,间接地设未知数),当所求的数较多时,把这些所求的数量用一个或尽量少的未知数表达出来,也是很重要的。

  设完未知数,就要找等量关系,来帮助列出方程。这时需要认真读题,因为许多等量关系是隐藏在字里行间的。中文有很多字、词、句表达相等的意思,如“相等”、“是”、“比……多……”、“比……少……”、“……是……的几倍”、“……的总和是……”、“……与……的差是……”等等,根据这些字句的含义,再加上其中的量用未知数表达出来,就能列出方程。

  重点·难点

  列方程解应用题是用字母来代替未知数,根据等量关系列出含有未知数的等式,也就是列出方程,然后解出未知数的值,列方程解应用题的优点在于可以使未知数直接参加运算。解这类应用题的关键在于能够正确地设立未知数,找出等量关系进而建立方程。而找出等量关系也在于熟练运用数量之间的各种已知条件。掌握了这两点就能正确地列出方程。

  学法指导

  (1)列方程解应用题的一般步骤是:

  1)弄清题意,找出已知条件和所求问题;

  2)依题意确定等量关系,设未知数x;

  3)根据等量关系列出方程;

  4);

  5)检验,写出答案。

  (2)初学列方程解应用题,要养成多角度审视问题的习惯,增强一题多解的自觉性,逐步提高分析问题、解决问题的能力。

  (3)对于变量较多并变量关系也容易确定的问题,用方程组求解,过程更清晰。

  经典例题

  例1   某县农机厂金工车间有77个工人。已知每个工人平均每天加工甲种零件5个或乙种零件4个或丙种零件3个。但加工3个甲种零件、1个乙种零件和9个丙种零件才恰好配成一套。问:应安排生产甲、乙、丙种零件各多少人时,才能使生产的三种零件恰好配套。

  思路剖析

  如果直接设生产甲、乙、丙三种零件的人数分别为x人、y人、z人,根据共有77人的条件可以列出方程x+y+z=77,但解起来比较麻烦        如果仔细分析题意,会出现除了上面提到的加工甲、乙、丙三种零件的人数为未知数外,还有甲、乙、丙三种零件各自的总件数也未知。而题目中也有关于甲、乙、丙三种零件之间装配时的内在联系,这个内在联系可以用比例关系表示,而乙种零件件数也在中间起媒介作用。所以如用间接未知数,设已种零件总数为x个,为了配套,甲种、丙种零件件数总数分别为3x个和9x个,再根据生产某种零件人数=生产这种零件的个数÷工人劳动效率,可以分别求出生产甲、乙、丙种零件需安排的人数,进而找出等量关系,即按均衡生产推算的总人数,列出方程 解  答

  设加工乙种零件x个,则加工甲种零件3x个,加工丙种零件9x个。

  答:应安排加工甲、乙、丙三种零件工人人数分别为12人、5人和60人。

  例2   牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?

  思路剖析

  这是以前接触过的“牛吃草问题”,它的算术解法步骤较多,这里用列方程的办法来解决。

  设供25头牛可吃x天。

  本题的等量关系比较隐蔽,读一下问题:“每天牧草都匀速生长”,草生长的速度是固定的,这就可以发掘出等量关系,如从“供10头牛吃20天”表达出生长速度,再从“供15头牛吃10天”表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。

  解  答

  设供25头牛可吃x天。

  由:草的总量=每头牛每天吃的草×头数×天数

  =原有的草+新生长的草

  原有的草=每头牛每天吃的草×头数×天数-新生长的草

  新生长的草=草的生长速度×天数

  考虑已知条件,有

  原有的草=每头牛每天吃的草×10×20-草的生长速度×20

  原有的草=每头牛每天吃的草×15×10-草的生长速度×10

  所以:原有的草=每头牛每天吃的草×200-草的生长速度×20

  原有的草=每头牛每天吃的草×150-草的生长速度×10

  即:每头牛每天吃的草×200-草的生长速度×20

  =每头牛每天吃的草×150-草的生长速度×10

  每头牛每天吃的草×200草的生长速度×20+每头牛每天吃的草×150-草的生长速度×10

  每头牛每天吃的草×200-每头牛每天吃的草×150

  =草的生长速度×20-草的生长速度×10

  每头牛每天吃的草×(200-150)=草的生长速度×(20-10)

  所以:每头牛每天吃的草×50=草的生长速度×10

  每头牛每天吃的草×5=草的生长速度

  因此,设每头牛每天吃的草为1,则草的生长速度为5。

  由:原有的草=每头牛每天吃的草×25x-草的生长速度

  原有的草=每头牛每天吃的草×10×20-草的生长速度×20

  有:每头牛每天吃的草×25x-草的生长速度

  =每头牛每天吃的草×10×20-草的生长速度×20

  所以:1×25x-5x=1×10×20-5×20

  解这个方程

  25x-5x=10×20-5×20

  20x=100

  x=5(天)

  答:可供25头牛吃5天。

  例3    某建筑公司有红、灰两种颜色的砖,红砖量是灰砖量的2倍,计划修建住宅若干座。若每座住宅使用红砖80米3,灰砖30米3,那么,红砖缺40米3,灰砖剩40米3。问:计划修建住宅多少座?

  解  答

  设计划修建住宅x座,则红砖有(80x-40)米3,灰砖有(30x+40)米3。根据红砖量是灰砖量的2倍,列出方程

  解法一:用直接设元法。

  80x-40=(30x+40)×2

  80x-40=60x+80

  20x=120

  x=6(座)

  解法二:用间接设元法。

  设有灰砖x米3,则红砖有2x米3。根据修建住宅的座数,列出方程。

  (x-40)÷30=(2x+40)÷80

  (x-40)×80=(2x+40)×30

  80x-3200=60x+1200

  20x=4400

  x=220(米3)

  由灰砖有220米3,推知修建住宅(220-40)÷30=6(座)。

  同理,也可设有红砖x米3。留给同学们练习。

  答:计划修建住宅6座。

  例4   两个数的和是100,差是8,求这两个数。

  思路剖析

  这道题有两个数均为未知数,我们可以设其中一个数为x,那么另一个数可以用100-x或x+8来表示。

  解  答

  解法一:设较小的数为x,那么较大的数为x+8,根据题意“它们的和是100”,可以得到:

  x+8+x=100

  解这个方程:2x=100-8

  所以   x=46

  所以  较大的数是  46+8=54

  也可以设较小的数为x,较大的数为100-x,根据“它们的差是8”列方程得:

  100-x-x=8

  所以   x=46

  所以  较大的数为100-46=54

  答:这两个数是46与54。

  解法二:当然这道题也可以设大数为x,那么较小的数可以用100-x或x-8来表示,根据题意,可得到下面两个方程:

  x-8+x=100

  x-(100-x)=8

  解这两个方程,也可以求得较大的数是54,较小的数是46。

  例5  如图是一个平行四边形,周长为120米,两个底边上的高分别为12米和18米,它的面积是多少平方米?

  思路剖析

  此题如果直接设平行四边形的面积为x平方米,当然要从周长来找等量关系;如果不直接设面积为x平方米,而设其中的一个底为x米(如设12米的高所对应的底是x米),由题意可知,等量关系应从平行四边形面积来考虑。

  解  答

  解法一:设12米的高所对应的底是x米,则平行四边形的面积是12x平方米。

  12x=(120÷2-x)×18

  12x=(60-x)×18

  12x=1080-18x

  12x+18x=1080

  30x=1080

  x=36

  12x=12×36=432

  解法二:设平行四边形的面积是x平方米。

  方程左右两边都乘以12和18的最小公倍数36得

  3x+2x=2160

  5x=2160

  x=432

  答:它的面积是432平方米。

  发散思维训练

  1.丢番图是古希腊著名的数学家,他的墓志铭与众不同,碑文是:“过路人!这里埋葬着丢番图,他一生的六分之一是幸福的童年;也活了一生的十二分之一,面部长起了胡须;随后是一生的七分之一的单身汉生活;婚后五年,他有了一个儿子;可是,儿子活到在丢番图一生年龄的一半时,不幸夭折;儿子死后,爸爸在深深的悲哀中也过了4年也与世长辞……”你能计算出他一生中主要经历的年龄吗?

  2.今年姐妹俩年龄的和是55岁,若干年前,当姐姐的年龄只有妹妹现在这么大时,妹妹的年龄恰好是姐姐年龄的一半,问姐姐今年多少岁?

  3.两个缸内共有48桶水,甲缸给乙缸加水一倍,然后乙缸也给甲缸加甲缸剩余水的一倍,则两缸的水量相等,求两个水缸原来各有多少桶水?

  4.早晨6点多钟有两辆汽车先后离开学校向同一目的地开去,两辆汽车离开学校的距离是第二辆汽车的3倍。到6点39分的时候,第一辆汽车离开学校的距离是第二辆汽车的2倍,求第一辆汽车是6点几分离开学校的?

  5.一人乘竹排沿江顺水漂流而下,迎面遇到一艘逆流而上的快艇,他问快艇驾驶员:“你后面有轮船开过来吗?”快艇驾驶员回答:“半小时前我超过一艘轮船。”竹排继续顺水漂流了1小时遇到了迎面开来的这艘轮船。那么快艇静水速度是轮船静水速度的多少倍?

  参 考 答 案 

  1.解:

  由此可得:丢番图幸福的童年是14岁以前,21岁长胡须,过12年的单身汉生活,21+12=33,33岁结婚,38岁得子,80岁时丧子,儿子只活了42岁,丢番图活了84岁。

  2.解:

  若直接设姐姐今年为x岁,则妹妹的年龄不好表示,所以我们设若干年前妹妹年龄为x岁,这样,姐姐在若干年前就为2x岁,妹妹今年年龄为2x岁,姐姐今年年龄是3x岁,于是,根据“今年姐妹俩年龄和为55岁”这一等量关系,可列方程

  2x+3x=55

  5x=55

  所以x=1

  所以,妹妹今年的年龄为11×2=22(岁);姐姐今年的年龄为11×3=33(岁)。

  答:姐姐今年33岁。

  3.解:

  设原来甲缸有x桶水,乙缸有(48-x)桶水。甲缸给乙缸加水一倍,则甲缸有水[x-(48-x)]桶,乙缸有水2(48-x)桶,乙缸也给甲缸加甲缸剩余水的一倍,则甲缸有水2[x-(48-x)]桶,乙缸有水{2(48-x)-[x-(48-x)]}桶,根据题意得:

  2[x-(48-x)]=2(48-x)-[x-(48-x)]

  2x-2(48-x)=2(48-x)-x+(48-x)

  3x=5(48-x)

  3x=5×48-5x

  8x=5×48

  x=30

  所以48-x=48-30=18

  答:甲缸原有水30桶,乙缸原有水18桶。

  4.解:

  两辆汽车的速度都是60千米/小时=1千米/分。设在6点32分时第二辆汽车离开学校的距离为x千米,则第一辆汽车离开学校的距离为3x千米,到6点39分时两辆汽车都行了7分钟,行程都是7千米,与学校的距离:第二辆汽车为(x+7)千米,第一辆汽车为(3x+7)千米,根据题意得:

  2(x+7)=3x+7

  2x+14=3x+7

  x=7

  所以3x=3×7=21

  因此,在6点32分时,第一辆车已行驶了21分钟,32-21=11

  答:第一辆汽车是早晨6点11分离开学校的。

  5.解:

  设快艇静水速度为m,轮船静水速度为n,水流速度为v,显然竹排速度就是水流速度v,由“顺流速度=船速+水速,逆流速度=船速-水速”的数量关系进行解答。

  这样,快艇从超过轮船起,遇到竹排(用了0.5小时)止,这段路程(快艇行程)为(m-v)×0.5,而这段路程是竹排行驶1小时、轮船行驶(1+0.5=1.5小时)的路程之和,即v+(n-v)×1.5。因而

  (m-v)×0.5=v+(n-v)×1.5

  0.5m-0.5v=v+1.5n-1.5v

  0.5m-0.5v=1.5n-0.5v

  0.5m=1.5n

  m÷n=3

  答:快艇静水速度是轮船静水速度的3倍。

解方程 篇5

  §5.2 (1)

  教学目标 :

  1、学会利用等式性质1;

  2、理解移项的概念;

  3、学会移项。

  教学重点:利用等式性质1及移项法则;

  教学难点 :利用等式性质1来解释方程的变形。

  教学准备:

  1、投影仪、投影片。

  2、天平称、若干个质量相同的物体,与物体质量相同的若干个砝码。

  教学过程 :

  (一)引入新课:

  1、  上节课的想一想引入新课:等式和方程之间有啥区别和联系?

  方程是等式,但必须含有未知数;

  等式不一定含有未知数,它不一定是方程。

  2、下面的一些式子是否为方程?这些方程也有何特点?

  ①    5x+6=9x②3x+5③7+5×3=22④4x+3y=2

  由学生小议后回答:①、④是方程。

  分析这些方程得:①等式两边都是一次式或等式一边是一次式,另一边是常数,②这些方程中有的含一个未知数,也有的含两个未知数。

  我们先来研究最简单的(只含有一个未知数的)的一元一次方程。

  3、一次方程:我们把等号两边是一次式、或等号一边是一次式另一边是常数的方程叫做一次方程。

  注意:一次方程可以含有两个或两个以上的未知数:如上例的④。

  4、一元一次方程:只含有一个未知数的一次方程叫做一元一次方程。

  5、判断下列方程哪些是一次方程,哪些是一元一次方程?(口答)

  ①    2x+3=11②y2=16③x+y=2④3y-1=4y

  6、啥叫方程的解?怎么样?

  关键是把方程进行变形为x=?即求得方程的解。今天我们就来研究怎样求一元一次方程的解(点出课题)利用等式性质1解一元一次方程

  (二)、讲解新课:

  1、  等式性质1:

  出示天平称,在天平平衡的两边同时都添上或拿去质量相同的物体,天平仍保持平衡,指出:等式也有类似的情形。

  强调关键词:"两边"、"都"、"同"、"等式"。

  2、  利用等式性质1:

  x+2=5

  分析:要把原方程变形成x=?只要把方程两边同时减去2即可。

  注意: 解题格式。

  例1 5x=7+4x

  分析:方程两边都有含x的项,要解这个方程就需要把含x的项集中到一边,即可把方程变形成x=?(一般是含x的项集中到方程的左边,使方程的右边不含有x的项),此题的关键是两边都减去4x。

  (解略)

  解完后提问:怎样检验方程时的计算有没有错误?(由学生回答)

  只要把求得的解代替原方程中的未知数,检查方程的左右两边是否相等,(由一学生口头检验)

  观察前面两个方程的求解过程:

  x+2=5                         5x=7+4x

  x=5-2                       5x-4x=7                                           

  思考:⑴把+2从方程的一边移到另一边,发生了啥变化?

  ⑵把+4x从方程的一边移到另一边,也发生了啥变化?(符号改变)

  3、  移项:

  从变形前后的两个方程可以看到,这种变形相当于:把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。

  注意:①移项要变号;

  ②移项的实质:利用等式性质1对方程进行变形。

  例2 :3x+4=2x+7

  解:移项,得3x-2x=7-4,

  合并同类项,得x=3。

  ∴x=3是原方程的解。

  归纳:①格式:时一般把含未知数的项移到方程的左边,把常数项移到方程的右边,以便合并同类项;

  ②与计算不同:不能写成连等式;计算可以写成连等式;

  ③一个方程只写一行,每个方程只有一个等号(理由:利用等式性质1对方程进行变形,前后两个方程之间没有相等关系)。

  练习:书本105页  1(口答),2(板演),想一想。

  (三)、课堂小结:

  ①啥是一次方程,一元一次方程?

  ②等式性质1(找关键词);

  ③移项法则;

  ④应用等式性质1的注意点(例2归纳的三条)。

  (四)、布置作业 :见作业 本。

解方程 篇6

  “自学互帮导学法”课堂教学设计

  课  题

  解方程

  课时

  2课时

  课  型

  新授课

  修改意见

  教学目标

  1、学会正确地写设句。

  2、学会分析应用题中的等量关系。

  3、会根据等量关系列出形如ax±bx=c的方程解答应用题。

  4、使学生能根据应用题的具体情况灵活选择解题办法,培养学生积极获取知识的能力和习惯。

  教学重点

  分析应用题中的等量关系

  教学难点

  根据等量关系列出形如ax±bx=c的方程解答应用题

  学情分析

  解方程需要对数量关系式或等式的基本性质进行具体的分析,因此教学重点落在用数量关系式或等式的基本性质的理解上。

  学法指导

  自学互帮,合作学习

  教    学    过    程

  教学内容

  教师活动

  学生活动

  效果预测(可能出现的问题)

  补救措施

  修改意见

  一、复习铺垫

  二、走进新课

  1、理解题意

  2、分析题意

  3、列出方程,解方程

  三、练习巩固

  四、总结本课

  

  1.师:解方程,并验算

  n÷10=768

  x+12=100

  师:计算非常准确,格式也非常正确。

  2.列方程并求解

  x减去15等于6;

  y的2倍与3的差是15;

  y与6的和是21;

  8个x比5个x多45.

  出示例3:小刚和大明去买一种奥运会纪念邮票。小刚买了8张,大明买了5张,大明比小刚少用6元。每张邮票多少元?

  师:快速默读,边读边想这道题告诉我们哪些数学信息,要我们求啥?

  师:谁来交流。

  师:今天,我们就要学习用一种新办法解决问题,用方程解决问题。(板书课题:用方程解决问题)

  师;你能根据题中的数学信息和问题画出线段图吗?

  师:把题意分析得很准确,根据你的展示,我们可以得到一个等量关系式:小刚8张的价钱-大明5张的价钱=相差的6元。(板书:小刚8张的价钱-大明5张的价钱=相差的6元)

  师:我们把每张邮票的价格看作标准量,可以用未知数x来表示,格式可以这样写:解设每张邮票x元。(板书:解:设每张邮票x元)你能根据这个等量关系式列出方程吗?

  师:你灵活运用上面的等量关系式,把“小刚的总票价”作为等量,得到8x=5x+6,写出等量关系式是:小刚8张的价钱=大明5张的价钱+相差的6元。(板书等量关系式和方程:小刚8张的价钱=大明5张的价钱+相差的6元,8x=5x+6)

  师:非常好,大家分别以“相差的6元”、“小刚的总票价”、“大明的总票价”为等量,写出了3个不同的等量关系式,并列出了方程,现在,请大家求这些方程的解。

  同学们,8x=5x+6这道题应该先在等式两边同时减去5x,因为方程两边都有x的题我们没有学过,我就想能把5x去掉就好了,我就先在等式两边同时减5x,写成8x-5x=5x+6-5x,3x=6,x=2。这样就解出来了。像这种在方程中同时出现两次未知数x时,可以直接进行加、减,也可以运用等式的性质在等式两边同加、同减或同乘、同除。

  教科书第103页试一试;练习二十中的第6、8、9题。

  师:今天我们学习了解应用题的一种新办法:列方程。在列方程解应用题时我们一定要注意仔细读题,理解题意,找出等量关系式,再列方程、解方程,希望同学们在以后的学习、生活中也能经常使用这种新办法来解决我们身边的实际问题。

  学生计算并验算

  独立练习,大部分学生完成后指名板演,并简介办法

  生默读,并进行勾画

  生:这道题告诉我们三条数学信息:小刚买8张邮票,大明买5张邮票,大明比小刚少用6元。要解决一个数学问题:每张邮票多少元?

  生:老师,这道题我会做,先算大明比小刚少买几张邮票,用8-5=3(张),再算每张邮票的价钱,算式是:6÷3=2(元)。

  试一试。生独立画线段图。

  试一试,写完后同桌说一说想法。

  生独立完成,并同桌交流。

  生:我是这样列式的:8x-5x=6,因为一张邮票x元,小刚买8张邮票就是8x,大明买5张邮票就是5x,所以列式为8x-5x=6。

  生:我列的方程是8x=5x+6。因为邮票的单价是x,小刚买8张用了8x元,大明买5张用了5x元,大明比小刚少用6元,所以只要大明的5x元加6元就等于小刚用的8x元。

  生:老师,我们还可以用“大明的总票价”为等量,写出等量关系式:小刚8张的价钱-相差的6元=大明5张的价钱。师板书:小刚8张的价钱-相差的6元=大明5张的价钱。

  我们可以列出方程为:8x-6=5x。

  生独立完成,并指名板演。

  学生解方程,求出x的值

  生独立完成,同桌交流。

  学生无法根据题意,先列出方程,再用等量关系准确地求出了方程的解

  生不能根据只知道题意设未知数,列方程。

  如有学生画不来线段图

  8x=5x+6的方程不会解。

  方程中有2个未知数的计算容易出错

  注意强调学生对题意的理解

  引导学生进一步学习

  教师巡视指导

  把一张邮票的单价作为标准量,大明买了5张,就画5条相同的线段;小刚买了8张,就画8条相同的线段。大明比小刚少用6元,其实就是大明比小刚少买3张所节约的钱。

  很多学生不会做,引导学生进一步学习。

  师多巡视指导

  板书设计

  用方程解决问题

  小刚8张的价钱-大明5张的价钱=相差的6元

  解:设每张邮票x元

  8x-6=5x

  3x=6

  x=2

  参考书目及

  推荐资料

  西师版五年级下数学教科书及教学参考书

  教学反思

解方程 篇7

  “自学互帮导学法”课堂教学设计

  课  题

  解方程

  课时

  1课时

  课  型

  新授课

  修改意见

  教学目标

  1、知道解方程的意义和基本思路。

  2、会运用数量关系式或等式的基本性质对解方程的过程进行语言表述。

  3、会对具体方程的解法提出自己解答的方案,并能与同学交流。

  4、会独立地解答一、二步方程。

  教学重点

  运用数量关系式或等式的基本性质对具体方程的解法提出自己解答的方案

  教学难点

  独立地解答一、二步方程

  学情分析

  解方程需要对数量关系式或等式的基本性质进行具体的分析,因此教学重点落在用数量关系式或等式的基本性质的理解上。

  学法指导

  自学互帮,合作学习

  教    学    过    程

  教学内容

  教师活动

  学生活动

  效果预测(可能出现的问题)

  补救措施

  修改意见

  一、看卡片写等式

  1.20加上x等于308

  2.a等于2b减去21

  3.12的3倍等于36.

  4.y减去8等于13

  师:请同桌互相检查写好的等式,我请几个同学到展台上把他们的作业展示给大家看,大家评判一下。

  二、走进新课

  1汇集问题,寻找出路

  2解决问题,形成办法

  3类比推广,深化探究。

  三、练习巩固

  四、回顾总结

  师:请同桌互相检查写好的等式,我请几个同学到展台上把他们的作业展示给大家看,大家评判一下。

  这些等式,哪几个是方程?

  师:谁能够很快猜出方程里未知数的答案?

  师:看到刚才同学们猜得那么有趣,澳大利亚特有的动物考拉也来凑热闹。(

  课件出示例1)你看它们多可爱啊!

  师:请你仔细观察,你发现了哪些数学信息?

  师:大家能根据数学信息说出等量关系吗?

  师:我们根据题意,知道4只考拉重12kg,设每只考拉为xkg,可以得到方程4x=12。(教师板书方程)

  师:大家想一想,方程4x=12的解是多少呢?

  师:大家的想法都很好,那你们把它写下来。

  师:从大家的书写中看出,三位同学都求出了方程的解是3。在数学上,求出方程的解的过程叫做解方程。(老师板书:求出方程的解的过程叫做解方程)

  师:要把解方程写出来,还有一定的格式,否则,别人就可能看不懂。先提行,写下一个“解”字;为了美观,尽量使等号对齐,两边写式子

  师:通过学习,和大家一起了解了一个新的知识:解方程。(板书:解方程)要判断方程的结果写对没有,应该怎么做呢?

  生:验算。

  师:好!下面,我出一个方程,你们马上写出求解的过程和验算的过程,不会的可以问问同学和老师。

  出示:20+x=30。

  师:前一段,我们写出了解一步方程的过程,那两步方程呢?四人小组一起试着写一写解方程“3y-8=13”的全过程。一会儿要请同学上来讲给大家听,看哪一组的说得清楚,写得规范。

  师:数学上的每一步都很重要。我们必须写清楚,否则别人看不懂就会误事儿!刚才大家写的过程,归纳起来很简单:就是解方程的时候,用数量关系或者等式的性质思考,再加上验算,那肯定不会有错的。

  师:你能解下面两个方程吗?并验算。

  (出示:18+6x=30,4n-25×4=15)

  完成课堂活动

  今天,我们学习了解方程,大家一起来说说,从这节课中你学到了啥?

  大家的总结很全面,从大家的总结中看出你们这节课学得非常认真,我们学数学最重要的是学习思考办法,并运用这些办法来解决问题,明天,我们将学习用方程来解决生活中遇到的问题,希望大家继续努力。

  20+x=308

  a=2b-21

  12×3=36

  y-8=13

  生:只是有些式子跟以前学的的不一样

  生:我会猜方程“20+x=30”的答案,x=10。

  生:老师,我还知道方程“3y-8=13”的解,y是7。三七二十一,减8是13。

  生:我发现图上有4只考拉,每只重xkg,他们一共重12kg。

  生:4x=12。

  生1:我认为方程4x=12的解是3,因为三四十二,所以x=3。

  生2:我也认为方程4x=12的解是3,因为x是12的因数,因数=积÷另一个因数,12÷4=3。

  生3:我也认为解是3。因为4x就是4乘x,利用等式的性质,在等式两边同时除以4,就可以得到x=3。

  生1:4x=12

  =12÷4

  =3

  生2:4x=12

  x=12÷4

  x=3

  生3:4x=12

  解:  x=12÷4

  x=3

  学生讨论交流看法

  学生解方程

  (1)组:解3y-8=13

  3y=13+8

  3y=21

  y=7

  (2)组:解3y-8=13

  3y-8-8=13-8

  13y-16=7

  验算3×7-8=21

  (3)、(4)组:

  解3y-8=13

  3y-8+8=13+8

  3y=21

  3y÷3=21÷3y=7

  验算3×7-8=21

  生独立完成

  生:我学会了解方程的书写格式。

  生:我学会了解方程的思考办法。

  生:我学会了方程的验算。

  只是有些同学的式子跟上面展示的不一样

  ……

  生:我知道8a=2b-21的解是,是……

  虽然很多同学能计算出方程的解,但格式不对

  学生很快完成了,书写有些不符合要求

  教师巡视指导,发现问题并纠正。

  不一样好啊!要是我们全班同学都长得一样,老师不是叫不出大家的名字了吗?

  ……

  师:我也觉得这个方程的答案挺难猜。这样吧,我们留着以后来研究。

  教师巡视指导

  刚才大家用数量关系式或等式的性质还原了式子中的一些数,得到了方程的解。这个解的过程我们就叫做解方程。写过程的格式还要注意:第一,先提行写下一个“解”字;第二,尽量使等号对齐,两边写式子;第三,可以利用数量关系式解答,也可以运用的性质进行计算,要特别注意的是:等式两边要同加、同减或同乘、同除。

  板书设计

  解方程

  求出方程的解的过程叫做解方程

  参考书目及

  推荐资料

  西师版五年级下数学教科书及教学参考书

  教学反思

解方程 篇8

  学习目标1、熟悉利用等式性质解一元一次方程的基本过程。2、通过具体例子,归纳移项法则。3、掌握解一元一次方程的基本办法,并能熟练求解一元一次方程。学习过程     ◆前置准备解方程3x-2=7(除了应用等式的基本性质来解,你有其它的解法吗?)◆自主学习:1.下列方程移项正确的是(    )a.2x+1=3x移项,得2x=3x=-1b. 4x-2=-5移项,得4x=5-2c.-0.5-3x=0.25x 移项,得-0.25x-3x=0.5d.x=1.5x-7 移项,得x-1.5x=72.解下列方程:(1)3x=2x-1                         (2)5x-1=2x◆合作交流请同学们先自主学习例1和例2,然后与同伴交流你的学习办法。◆归纳总结:请同学们合作讨论解方程步骤、思想办法。◆     例题解析1.当x取何值时,代数式(2x+1)/3与(5x-1)/6+1的值相等?2.已知a:b:c=2:3:4,a+b+c=27,求代数式a-2b-2c的值。◆当堂训练1.用移项法则解下列方程:(1)2x-2=3x+3                    (2)(3x-1)/5=1-(x+2)/2学习笔记:1.我掌握的知识2.我不明白的问题课下训练:1.已知某数的1/3等于这个数减去4,那么这个数是(       )a.  4            b. 2            c. 6           d. 8 2.当x=        时,代数式3x-2与4x-5的值互为相反数。3.若-2x3m-1-6=0是x关于的一元一次方程,则(-1.5m)=             。4.习题5.3第1题。(1)                            (2)(3)                            (4)中考真题(,眉山)小李在解方程5a-x=13时,误将-x看作+x,得出的解为x=-2,则原方程的解是(      )。x=a. x=-3              b. x=0              c. x=2           d. x=1

解方程 篇9

  苏教版小学五年级解方程的办法与人教版老教材解方程的办法完全不同,老教材利用四则计算各部分之间的关系来解方程,即一个加数等于和减去另一个加数,被减数等于差加减数,减数等于被减数减去差,一个因数等于积除以另一个因数,被除数等于商乘除数,除数等于被除数除以商。而苏教版教材是在学习“方程的意义”之后,安排一个“等式基本性质”内容的学习,将其作为导出解方程办法的认知基础。依据等式的基本性质即“在方程两边同时加上或减去、乘上或除以一个不为0的数,等式不变”进而求出方程的解。而且在教材中也特意回避了减数和除数是未知数的方程。有些教师因为以往的经验在脑海中根深蒂固,一时难以适应新办法。因此在实际教学中依然延用旧办法,而且认为在实际运用中学生掌握起来也比较容易,也都喜欢用这种办法来解题。另外,如果学生在做题中一旦遇到了以减数或除数为未知数的方程,就不知该怎样下手了。确实,上面提到的几点,在我们实际教学中是存在。那么,现在我们究竟该怎样解方程呢?

  针对怎样解方程,我们年级组数学老师认真贯彻落实新课标理念,坚定不移地按照新课标要求,为了学生的长远发展,根据教学经验,我们从以下三个方面说明用等式基本性质解方程的优越性:

  一、解题思路符合学生的特点和认知规律

  用等式基本性质解题,思路更加清晰明了。教材首先编排了方程的意义,通过天平理解左右平衡。而在方程的意义和解方程中间插入了一个做天平的游戏,这个游戏也就是后面学习解方程的办法,应该说这个游戏很直观,四次游戏分别代表了在方程左右两边加、减、乘、除(0除外)相同的一个数,方程的左右两边仍然相等。在学习解方程的过程中每一步也就是应用了这四次游戏的办法来求出未知数的值。紧紧抓住方程的本质特征——“等式的基本性质”,把各种方程整合为同一类型的问题,解题思路显得异常简单。那就是:只要在等式两边同时进行相同的运算,使方程的一边只留下未知数,另一边只剩下已知数,即可求出方程的解。旧教材要记住并灵活运用六种关系式解方程,而新教材只需运用一种性质解方程,显而易见,后者较之前者更容易被理解并应用。虽然,有些老师在教学中尝试了让学生用两种办法解题后,认为学生喜欢用加减或乘除运算之间的关系来解方程并容易掌握,这实际上是一种误解,学生可能是喜欢用算术法解方程,但是呢究其原因,往往是因为书写上的一些便利就对其心有所属,这也是对新办法的一些偏见,需老师在实际教学中正确引导。

  二、有利于学生的长远发展

  在新一轮课程改革中,为了学生的可持续发展,将等式性质作为小学解方程的依据,使中小学解方程的思路得到基本统一,解释趋于一致。教方程的目的一是为了针对小学应用题教学的难点,旨在化难为易,它常常可以化逆向思维为顺向思维,提高了学生分析问题、解决问题的能力;再次为了强化中小学数学教学的衔接,为中学系统地学习方程的知识做铺垫。因此,为充分体现解方程的地位和作用,解法思路的改变就是必然的,这也是为了学生的可持续发展,为学生的终身学习服务。

  三、对怎样处理较特殊的方程问题上,新课程标准也有要求。

  《数学课程标准》要求学生掌握简单方程就行了,所以教材中不再出现形如a-x=b或a÷x=b这两种类型的方程。这是因为小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及其算理解释比较麻烦;至于形如a÷x=b的方程,本质上是分式方程,依据等式的基本性质解需要先去分母,同样不适合在小学阶段学习。解a-x=b或a÷x=b这两种类型的方程是中学数学的学习内容。如果有了负数的计算及分数的计算等相关的知识储备,用“等式的基本性质”解此类型的方程将易如反掌。即使学生在解题时出现类似的方程,如8-x=5,我们根据等式的基本性质完全可以解,只要告诉学生在方程的两边同时加上“x”,使方程成为8=5+x,即5+x=8,学生就会解了。其实,我们也无需在这类方程上过多纠缠,它毕竟超出了我们现在的教学目标,这样的问题随着学生数学知识的丰富,以及对等式性质有深入了解后,会很轻松地解决。

  由此看来,解方程的内容调整后,利用等式的基本性质解方程的思路更为统一,与初中的联系更为紧密,优越性也就更为明显了。显然,课标是我们每个教师教学的准绳,我们要深刻领悟课标的教学理念,深入钻研教材,培养学生综合运用所学知识灵活解决实际问题的能力,实现课标中所说的“学生的数学学习内容应当是现实的、有意义的、富有挑战性的。”真正做到:一切为了学生,为了学生的一切。

解方程 篇10

  活动内容:关于方程教学中的一些问题。

  1.方程怎样进行验算,本组教师之间相互达成一致。

  2.对未知数在方程中的减数的位置和除数的位置中出现的情况,是否要进行一定的教学辅导。因为教材中的解方程是用等式的性质来完成的而不是应用三者关系来解的,因此教材中不出现未知数在减数的位置和除数的位置上的方程。但是呢在实际问题解决的时候,学生根据等量关系就会出现这样的方程,那就不会解了。我们认为虽然教材中对这种情况是避免的,但是呢我们在教学时还是适当进行补充教学。

  利用三者关系解这一类的方程,或者仍然运用等式的性质,化系数为1,进行教学。

  3.在列方程解决实际问题的教学中,重视对实际问题中等量关系的寻找,这是列方程解的关键。学生找的等量关系要与所列的方程相一致。

  4.相关习题的设计:

  找等量关系练习。

  1.黑兔的只数是白兔只数的5倍。

  2.电视塔的高度比居民楼的30倍多5米。

  3.松树的棵数比柏树的棵数的4倍少8棵。

  4.科技书的本数比故事书的3倍少24本。

  5.买iPhone花了6.7元,找回3.3元。

  6.60元买了15个皮球。

  处理的时候还可以分一些层次。

  先是根据叙述找到等量关系

  再给出已知量和问题,要学生说说根据这个等量关系,用啥办法解比较方便。

  以“科技书的本数比故事书的3倍少24本。”为例;等量关系为:

  故事书的本数×3-24=科技书的本数

  如果已知故事书的本数,那就直接可以利用等量关系式求出科技书的本数。如果已知的是科技书的本数,那么等量关系式中故事书的本数就是未知数,就要设这个未知数为x进行列方程解比较简便。

  通过这样的练习能够让一部分学生体验到列方程解的好处。

  从五年级解方程谈“瞻前顾后”

  记得我们上学的时候,解最简单的方程的方式是这样的:例如1+x=3就是x=3-1,x=2。很好懂吧!但是呢现在五年级课本上是这样的:1+x=3,1+x-1=3-1,x=2。看起来很啰嗦吧!那么为啥教材这样来改呢?如果单单从简单的加减乘除的方程来看,第一种办法无疑是简单易懂而且步骤少,而第二种办法就相对复杂了。那教材这样来改的目的是啥呢?我曾经跟博山教研室的李效宏科长探讨过这个问题,他谈到了教学要“瞻前顾后”的问题,使我深受启发。

  大家都知道,知识是有层次性的,新知识必然以旧知识为基础,正所谓“温故而知新”,旧知识学好了,必然有利于新知识的学习,打好基础是很重要的。老师们都懂得在学习新知识前要了解学生以前学习了哪些相关的基础知识,这样才能根据学生的知识基础进行新知识的教学。但是呢你有没有想到,你现在教给学生的新知识,也将成为学生以后学习的知识基础,那我们做到“瞻前”了,是不是也需要“顾后”呢!还是以上面的五年级的方程为例,很多老师觉得小孩对第一种办法容易理解,解起方程来正确率也高,再加上老师们在教学中也习惯了第一种解方程的办法,所以有些老师以为不必拘泥于教材,就仍然用第一种办法来教学生解方程,而且学生出错很少,考试成绩也不错。

  那学生考试成绩高了是否就可以认为教学是成功的呢?答案显然是否定的!小学五年级不是教学的终点,而是学生漫长学习生涯中的一个阶段,这就像马拉松,你在某一段路上的加速并不说明你的最后成绩,反而也许是你耗尽体力打乱生理规律的罪魁祸首。五年级的方程是小孩学习方程的起点,打好基础对小孩以后用方程解决数学问题至关重要,而学生现在学习的解方程的办法,不能仅仅以求出方程的解为唯一目的,重要的是让学生一开始接触就了解方程的基本性质,利用方程的基本性质来解方程,这样的办法才是普遍的规律性的东西,即使学生到了中学,这也是正确有效的办法,因为它是本质性的东西。而前面说的第一种办法显然具有很大的局限性,能够解决小学阶段的大多数问题,却与以后学生要学习的东西没有多少内在联系,而且到了中学这种办法在很多时候已经不能继续使用,这势必使学生要么对新的办法有所抵触,要么对以前的办法产生怀疑,不利于知识的衔接。

  虽说教师不能拘泥于教材,但是呢首先你要了解教材编写的意图,教材设计如果不尽合理,教师可以灵活变通,但在对教材不熟悉的情况下随意改变教学内容和办法,是不恰当的。解方程的问题就是一个例子。只有瞻前顾后,既了解所教知识的起点,也要清楚所教知识的发展,承上启下,有机联系,使学生对知识的掌握具有连贯性和可持续性,才是成功的教学,才是真正为学生将来负责的教学。

解方程 篇11

  教学困惑讨论:为啥解方程时要“绕圈”?

  在解方程:x-6=3时,有的教材用到下面的办法:

  解:x-6=3

  x-6+6=3+6

  x=3+6

  x=9

  对于上面步骤中的“x-6+6=3+6”有的老师不理解,为啥解方程要绕圈。

  有一种说法:“四则运算走不远,要走代数化,要用方程处理运算。平面几何走不远,也要代数化,走解析几何的路子。”这一种说法,至少给我们一个这样的信息。用四则运算解方程和用代数办法解方程所用的处理思路或说其中的数学思想是不同的。而这里的不同并不仅仅是指所处理的问题的范围或说是能处理的问题的复杂程度之间的差异。

  在解方程时是用算术法解还是用代数的办法来解,我们大多关注的是思维的办法和依据,是逆向思维还是顺向思维,是用到的等式性质还是四则运算的关系。我想除了这些不同之外,还有以下的不同。

  1.对“=”号的理解。

  2.对未知数的理解。

  先说“=”号。

  “=”号表示啥意思?2+3=5,表示2与3的和是5,表示2加上3的答案是5,这里的“=”号是表示运算的结果,表示答案。我们很少说“=”号表示相等,即使说“相等”也常常是指2与3的和与5是相等的。很少再做进一步的发展。

  仔细看一下解方程的过程,我们会发现,“=”号的意义在这里已有了变化。它主要是指两边的部分相等。这种相等多了平衡、配平的意味。我们是把“=”号连同它的两边看成是一个整体,是一个等式,就象达到平衡状态的一架天平。运算、结果已变得不再重要,只要它们两边相等,能平衡就行。——而这种发展,学生是很难一下子理解到的,也需要一个过程。

  对于未知数的理解。

  有的教材中处理时用“□”表示未知数,有的用“○”,有的用x,y,z,a,b,c…等等,我们说这都是形式,不是实质。形式是容易学的,是容易模仿的,而实质是需要理解的。那么,这里的实质是啥?是把x当成是一种数,是一种超出一般的、不同于具体的数的数,它可以代表任何的一个数,与2,3,6,这些具体的数更有一般性。说了这一堆,还是难理解。我们还是看学生在用算术法和用代数法解方程时对待未知数的不同。

  用代数法解:

  x-6=3

  x-6+6=3+6

  x=3+6

  x=9

  在这个解法中,我们不关注x,关注的是怎样把与x不同的“6”(或者说“-6” )处理掉,x是啥数,我们不去管。它就是一个可以参与运算的数,至于是多少,它在啥位置,与其他的数有啥关系,我们不去想,不在它身上劳神费力。在这种解法中,我们更关注的是x与其他数在形式上的不同。

  再看用算术法解:

  x-6=3

  x=3+6

  x=9

  我们关注的是x,6,3这三个数涉及到啥运算,它们三个数有啥关系。要关注三个数的关系,至于x是被减数还是减数则一定要看清楚,否则会出大错。在这里,我们自始至终是把x当成和6,3一样的具体的数来看的。在这种解法中更多关注的是x与其他数的相同点。

  最后再说一点,课标要求是“会用等式的性质解简单的方程(如3x+2=5,2x-x=3)”,对于 x-6=3型的方程我们可以让学生用算术办法去解。愿意用方程去解也可以,处理x-6+6时可以这样想,x这个数减去6再加上6等于没有变化,所以还是x。

  其实,上面说了许多话,是说为啥学生理解解方程这么难的,没有正面回答为啥解方程要“绕圈”。有关方程解法的问题,王永老师有一篇文章,记得是发表在《小学青年教师》上,可以参考。

解方程 篇12

  一、教材分析

  教材的地位和作用

  《等式的性质的应用》是义务教育课程标准实验教科书数学七年级上册“3.1.2”的第二节课。学生在学习了等式的性质的基础上,对知识的拓展,使等式的性质与解方程结合起来,它有助于引导学生利用等式的性质研究方程的解法。在本节的教学中,主要为解方程的“合并同类项”“移项”“除以未知数的系数”等知识做好铺垫的。

  二、教学目标分析

  学情分析 学生已经掌握了一步计算的方程,不过他们利用是四则运算各部分间的关系来解方程的。学习等式的性质,是对解方程思路的一种转变。并会用等式的性质也能熟练的解简单的方程。

  根据新课程标准的理念以及前面对教材、学情的分析,我制定了如下教学目标.

  知识与技能目标:

  (1)熟练应用等式的性质解方程;

  (2)学会观察、分析,使逻辑思维能力得到提高。

  过程与办法目标:

  通过自主预习、合作探究、小组交流方式让学生经历用等式的性质解方程的探究过程,并体验用等式的性质解方程的新颖与知识的应用过程。

  情感态度与价值观目标:

  培养学生实事求是的学习态度,渗透与他人交流、合作的意识,并能学会用联系的观点看待问题。

  教学重难点分析

  教学重点:运用等式的性质

  教学难点:运用等式的性质解方程

  本课在设计上以低起点,小台阶,循序渐进,符合学生接受知识的特点,培养学生灵活性,使他们获得成功的满足感。并通过逐步深入的课堂练习,师生互动、讲练结合,进而突出重点、突破教学难点.

  三、教学办法与教学策略

  课程标准指出:学生掌握知识有一个过程,要在学生初步理解的基础上,通过必要的练习来加深理解,逐步掌握。同时,通过练习,把知识转化为能力。本节课主要以自主─合作─探究,归纳─总结─应用为主线, “以学生活动为主导,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,并通过“三学小组”活动来实施。

  以小组为单位,由小组长组织在小组内互学后进行小展示,各小组在小组内展示结束后,由组内推荐在班内进行大展示,组间质疑、指导及互评,加深学生对所学知识的理解。

  整个学习过程注重激发学生的思维,使他们积极积极地参与学习活动,达到明“理”知“法”。并在设计练习时注重以充实、有效的练习活动为载体,让学生探究掌握学习内容,体验领悟数学的思想和办法,发展学生学习数学的积极情感。

  四、教学过程分析

  1.创设情境,独立自学

  (设计意图:以简单的方程入手,让学生用熟悉的解题办法引入新课,有效激起对知识的回顾,初步感知等式的性质与方程的联系,有效调动学生的学习兴趣。)

  2、自主探索,合作互学

  学生自学课本82页内容,以小组为单位完成以下问题:

  (设计意图:在学生充分思考和讨论后,每个小组派出代表汇报结果,再通过倾听其他小组意见的发现自己的不足,在此过程中,教师要倾听,给予敢于表达自己观点的学生予以鼓励性评价。通过上述活动,逐步学会运用等式性质来解方程能力。)

  3、尝试练习,展示竞学

  (设计意图: 尝试练习是学生学习知识后,对知识初步应用的体验,在尝试学习中,能使每个学生都积极动脑思考,认真自学,挖掘每个学生的潜能。在尝试学习中,学生的练习或多或少有一些错误、疑惑,甚至是错误,此时根据学生的难点进行点拔,会起到很好作用。)

  4、范例解析,精讲导学

  (设计意图:通过这一步学习,进一步检测学习对知识的应用情况。)

  5、小结评学

  6、检测固学

  五、评价分析

  本节内容并不多,通过对等式的性质的应用,体验了与方程的关系,加深对已经学习过的内容的认识,并初步感知对等式的性质的应用的优越性。本节课的设计遵循学生的认知规律,让学生通过的动口、动脑、动手的积极探究,经历知识的产生、发展、形成与应用的过程,重在培养学生观察、分析、抽象概括的思维能力

  本节课体现了学生主体、教师主导的地位,多数时间让学生自己去探究,当学生敢于表述自己的观点时,及时予以鼓励性评价。

推荐站内搜索:宪法心得体会300字、山西省公务员考试成绩查询、2015成人高考成绩查询、广西自学考试网上系统、河北教育考试院自考成绩查询、观后感300字、今年考研分数线、广州专升本、专升本网上报名、常识判断题库、

解方程(精选12篇)
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:解方程(精选12篇)
文章链接:https://678999.cn/145120.html
本站资源仅供个人学习交流,请于下载后24小时内删除,不允许用于商业用途,否则法律问题自行承担。

一路高升范文网

提供各类范文...

联系我们联系我们

登录

找回密码

注册