《积的变化规律》教学预设(精选4篇)《积的变化规律》教学预设(精选4篇)《积的变化规律》教学预设(精选4篇)

欢迎光临
我们一直在努力

《积的变化规律》教学预设(精选4篇)

《积的变化规律》教学预设(精选4篇)

《积的变化规律》教学预设 篇1

  教学内容:

  教材第58页例4。

  教学目标:

  1、使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。

  2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。

  3、初步获得探索规律的一般办法和经验,发展学生的推理能力。

  教学重难点:

  引导学生自己发现规律,概括规律,进而运用规律。

  教学过程:

  一、创设情景,导入新课

  1、 谈话导入。

  2、 出示动车的速度可达4千米/分钟。算一算它开2分钟会行多少千米呢?8分钟呢?40分钟呢?400分钟呢?

  (设计意图:通过身边的事物导入,亲近而自然,学生参与的积极性相对也比较高,而且数字简单,起点较低,学生学习兴趣比较浓。)

  二、观察比较,猜想规律

  ①4×2=8(千米)

  ②4×8=32(千米)

  ③4×40=160(千米)

  ④4×400=1600(千米)

  1、 仔细观察我们刚才列出的这4个算式,你发现了啥?四人小组交流一下。

  (设计意图:将发现先四人小组交流,让学生学会将自己的资源和别人共享,同时学会倾听别人的发现,学会探讨,学会在交流中对知识的再认识。)

  2、汇报交流。

  ①将自己的发现说给大家听。

  ②补充:为了表达的更清楚一些,往往把前面的因数称为第一个因数,后面的称为第二因数,最后的结果称为积。

  (设计意图:学生在说发现时注重学生的表达,关注学生表述时的用词,在说算式之间的关系时适时引导学生注重细节,规范用词。)

  ③这两个算式之间有这样的关系,其它的还有吗?

  (设计意图:继续追问,充分抓住学生说得欲望,在不断的说得过程中能对积的变化规律有一个初步的感性认识。)

  3、发现变化:一个因数(不变),另一个因数(变了),积也(变了)。积的变化和啥有关系?有怎么样的关系?

  (设计意图:不冒然出现规律而是让学生在观察、比较后明确积的变化与因数有关,积是随着因数的变化而变化,随后再认识因数和积有怎么样的关系,让学生对知识点有一个细化的认识过程,慢慢理解,层层递进。)

  4、猜想规律。

  板书:两个数相乘,一个因数不变, 另一个因数乘几或除以几 ,积也乘上或除去相同的数。

  三、举例验证,得出规律

  1、提出质疑:我们从这四个算式中得出这样的猜想,那是不是所有这样的乘法算式中因数和积都有这样的变化规律呢?

  2、验证猜想:同桌合作,举例验证规律,鼓励学生举出反例。

  (设计意图:让学生经历“猜想----验证”的过程,让学生感受到数学的严谨性,帮助学生树立科学的学习态度。)

  3、汇报交流:

  ①呈现符合这个规律的例子,并说理由。

  ②呈现不符合这个规律的例子,并加以引导纠正。

  4、得出规律:同学们举了这么多例子,大量事实证明这个规律确实是存在的。

  5、补充规律:这里乘几,除以几可以是哪些数?

  (设计意图:用事实说话,经历验证得过程,感受知识的严密性,学会验证规律的一般办法。)

  6、总结规律:同学们非常厉害,通过观察、比较、猜想、验证得到了这个规律。

  板书:两个数相乘,一个因数不变, 另一个因数乘几或除以几(0除外) ,积也乘上或除去相同的数。

  7、揭题并读一读规律。

  四、应用规律,拓展延伸

  根据8×15=120,不笔算,马上写出下面算式的得数。

  24×15=     4×15=    8×75=     48×15=      16×45=

  1、 交流前四题的结果,以及计算过程。

  2、出示16 × 45 ,提问能根据8× 15 =120计算出结果吗?观察算式,交流发现,提出猜想,验证规律。

  3、仔细观察48 × 15 = 720和 16 × 45 = 720  ,交流发现,提出猜想,验证规律。

  (设计意图:通过练习,让学生在巩固新知的基础上,继续探索积的变化规律,进而进一步激发学生的学习欲望,使学生在学有余力的情况下能自然的接受一些延伸的知识,让各类小孩都能有不同程度的发展与提升。 )  

《积的变化规律》教学预设 篇2

  教学内容:积的变化规律(人教课标版《数学》四年级 上册第58页例四,59页练习九)

  教学目标:

  1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。

  2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本办法和经验。

  3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。

  4、培养学生从正反两个方面观察事物的辨证思想。

  教学重点:发现并运用积的变化规律。

  教学难点:积的变化规律的探究策略。

  教学过程:

  一、创设情景,提出问题

  屏幕显示:为响应"中央关心西藏,全国支持西藏"号召,武汉市长征小学与西藏希望小学开展"手拉手,献爱心"活动,全学校学生们捐出自己的零花钱,为西藏小孩子购买一些图书和学习用品。请你们帮忙算一算,一盒美术颜料6元,买2盒花多少钱?40盒呢?200盒呢?

  师:谁来帮忙解答第一个问题?

  生:6╳2= 12(元)

  师:你能说说在这道乘法算式中,6和2是啥?12也是啥?

  生:6和2是乘法中的两个因数,12是积。

  师:说得好!第二个问题呢?

  生:6╳40=240(元)

  师:接着说第三个问题?

  生:6╳200=1200(元)

  师:和他们想法一样的请举举手。(同学们纷纷举起手来)

  师:仔细观察、比较这组算式,你能发现啥?

  6╳2= 12(元)

  6╳40=240(元)

  6╳200=1200(元)

  生1:有一个因数都是6。

  生2:对,一个因数相同,另一个因数不同,积也不同。

  师 :观察得真仔细! 一个因数相同可以说一个因数不变,那另一个因数呢?

  生3:另一个因数变了,积也变了。

  生4:我看到一个因数不变,另一个因数越变越大,积也越变越大。

  师 :你是从上往下观察的,还可以怎么样看?

  生5:倒过来,从下往上看,一个因数不变,另一个因数越变越大,积也越变越大。

  师 :当一个因数不变时,另一个因数和积是怎么样变化的?积的变化有没有规律呢?是啥规律呢?这节课我们来研究这个问题。

  二.自主探究,发现规律

  师:为方便研究,可以称这三个算式分别为(1)式,(2)式和(3)式。如果把(1)式作标准,(2)式和(3)式分别与(1)比,因数和积各是怎么样变化的?

  生:(2)式与(1)比,一个因数不变,另一个因数2括大20倍是40,积12扩大20倍是240。

  师:2括大20倍是40,也就是另一个因数乘2,积呢?

  生:一个因数不变,另一个因数乘2,积也乘2。

  师:说得很清楚。再把(3)式和(1)式比看?

  生:一个因数不变,另一个因数乘100,积也乘100。

  师:大家比的结果和他一样吗?

  生(全体):是

  师:谁来说说通过刚才的两次比较,你们也发现了啥?

  生:一个因数不变,另一个因数变化,积也变化。

  师:怎么样变化的?能说得具体些吗?

  生1:一个因数不变,另一个因数乘一个数 ,积也乘相同的数。

  生2:一个因数不变,另一个因数乘几 ,积也乘几。

  师:你们真能干!刚才,我们从上往下观察,发现了这样的积的变化特点,那从下往上观察,用刚才比较研究的办法,比一比,看看有没有新的发现?具体应该怎么比呢?

  生1:以(3)式为标准,拿(2)式和(1)分别与(3)式比,看因数和积怎么样变的?

  生2:(2)式与(3)比,一个因数不变,另一个因数除以5 ,积也除以5。

  生3:(1)式与(3)比,一个因数不变,另一个因数除以100 ,积也除以100。

  生4:老师,我发现一个因数不变,另一个因数除以几 ,积也除以几

  师:你们真会发现。我们通过从上往下和从下往上两方面的观察找到了这组算式积的变化特点,那是不是其它的乘法算式也有相同的积的变化特点呢?下面,我们应该怎么样研究?

  生:我们可以自己找一些乘法算式的例子用刚才的比较办法研究,看看积的变化是不是具有相同的特点。(其他同学向他投去敬佩的目光)

  师:这可是一个金点子,咱们说做就做。李老师自荐,先出一道乘法算式,60╳8=480,下面就看你们的了?

  生1:把60乘9等于540,另一个因数8不变。

  师 :你猜猜看,积会怎么样?

  生1:积也会乘9,等于4320

  师:那你们横着算,540乘8是等于4320吗?

  生2:也是4320。

  师 :祝贺你们猜对了。再来试一次。

  生3:我把60不变,另一个因数乘30,猜积也乘30。

  师 :你们横着算一算。

  生4:对,也是14400。

  生5:你们都举的是乘几的变化,我来出个别的,60除以12等于5,8不变,积也除以12,是40,横着算,5乘8的确等于40。

  师 :你的研究意识真强。除次以外,还可以有多少种变化.。

  生 :无数种。

  师:下面,你们同座位之间也这样相互出一道乘法算式作标准,自己将其中一个因数不变,,另一个因数变化观察积的变化情况。,好吗?计算比较大的数时,可以用计算器帮忙,开始!

  汇报情况略

  师 :既然许许多多的乘法算式中都有这样的积的变化特点,它就是今天我们探究的积的变化规律。谁来把这个规律再说一说。

  生 :一个因数不变,另一个因数乘几 ,积也乘几;一个因数不变,另一个因数除以几 ,积也除以几。

  师 :数学讲究简洁美,能把它说得再简单点吗?

  生 :一个因数不变,另一个因数乘(或除以)几 ,积也乘(或除以)几。

  师 :说得太棒了!

  小精灵:同学们,祝贺你们发现了积的变化规律,愿意用它解决实际问题吗?那就跟我走吧!

  三、运用规律,解决问题

  1、根据8×50=400,直接写出下面各题的积。

  16×50= 32×50= 8×25=

  ……

  师 :32×50的积是多少?

  生1:等于1600。

  师 :怎么样算的?

  生2:以8×50=400为标准,把32×50与它作比较,一个因数50不变,另一个因数乘4,积也乘4等于1600。

  生3:还能以16×50=800为标准,把32×50与它作比较,一个因数50不变,另一个因数乘2,积也乘2等于1600。

  师 :很有数学头脑,运用规律算得可真快。

  ……

  2、全社会各界朋友发起了向西藏教育捐赠和教师自愿者等活动,他们考虑着何种运输方式进

  入西藏。咱们也帮忙分析一下,一辆汽车在青藏公路上以60千米/时的速度行使,4小时可以

  行( )千米。一列火车在青藏铁路上行驶的速度是汽车的2倍,这列火车用同样的

  时间可行( )千米。

  生 :一辆汽车4小时可以行驶240千米,用60乘4等于240千米。

  师 :根据啥数量关系来列式计算?

  生 :速度乘时间等于路程。

  师 :第二个问题呢?

  生 :60×2×4=480千米,先算出火车速度,乘时间4小时等于路程。

  师 :还有其它解法吗?

  生:240×2=480(千米),因为速度乘2就是一个因数乘2,时间不变就是一个因数不变,那么积也就是路程也要乘2等于480千米。

  师 :能运用积的变化规律解决问题,你的数学意识很强。同学们喜欢那种办法?

  生 :喜欢第2种,只需一步计算。

  师 :多关注已有信息,灵活运用规律能使解题思路更开阔。

  ……

  四、全课总结,拓展延伸

  师 :非常感谢你们为西藏捐助活动作出的努力。在这节数学课上,你们还有啥收获吗?

  生1:我们找到了积的变化规律:一个因数不变,另一个因数乘(或除以)几 ,积也乘(或除以)几。

  生2:我会用积的变化规律解决生活中的问题,很方(请记得收藏本站-一路高升范文网,以获取更多新鲜内容)便。

  生3;我还学会了研究规律的办法。

  ……

  师:大家用自己智慧的双眼,聪明的大脑发现并运用了乘法规律,老师真为你们高兴。学以致用,其乐无穷。先选择下面计算题中的一道算出积,然后直接写出其他各题的积。

  18×30= 18×15=

  18×5= 54×5=

  ……

《积的变化规律》教学预设 篇3

  《积的变化规律》是在学生掌握一定的乘除法计算办法和用计算器进行计算的基础上教学的,本课用计算器来探索一些积的变化规律。

  本课的教学思路:用口算导入,其中口算中安排了一些因数变化的对比题,如:25×4和25×8等。口算完成后,教师板书:3564×158=?你能口算吗?怎么办?使学生明白用计算器方便我们进行大数目的或复杂的运算。

  新课教学,出示教材中的例题,帮助学生理解题意:积的变化是啥意思?跟谁比变化了?怎么样计算?在计算前,先让学生猜一猜:你觉得积会怎么样变?能提出你的猜想吗?然后学生借助计算器进行计算,填写教材中的表格。集体交流,提出问题:你的猜想正确吗?那在其他的乘法算式中还有没有这样的规律呢?写出一道算式,运用刚才的办法去试一试,并在你的小组里交流。小组汇报,并总结出积的变化规律——一个因数不变,另一个因数乘几,得到的积就是原来的积乘几。

  巩固练习,由浅入深。先是模仿例题的练习,根据规律直接填表;然后是直接根据一道算式填出变化后的得数;最后是应用规律解决生活中的实际问题,如:购买同一种商品,数量发生变化,总价也跟着发生相同的变化。

  课堂小结,一是所学知识,二是研究问题的办法(提出猜想——举例验证——得出规律——解释应用),同时进一步激励学生进一步研究:如果乘法算式中两个因数同时变化呢,积会怎么变?

  教学后,有几点体会:

  一、在充分经历中感悟。

  在本课教学中,我就充分注意这一点,注重让学生充分参与积的变化这个规律的发现,充分调动学生参与的积极性,让学生在大量的举例、充分地观察中去感悟积的变化的规律,初步构建自己的认知体系。

  二、在充分感悟中提炼。

  在本课教学中,学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。此时,我充分地发挥了自己的主导作用,抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。

  不足之处:

  一、教师的语言不够凝练。如:引导学生用计算器探索变化规律时,提的问题太多,不利于学生独立分析和思考。

  二、缺乏耐心,不善等待。如:第1题练习,当学生没有自觉地应用规律进行计算时,教师缺乏耐心,直接请发现规律的同学起来说。如果当时能引导这位同学观察一下,因数怎么样变化的,能不能不计算就报出积是多少?等待会让课堂和谐和大气。

  三、练习设计可以更有深度。如:设计逆向思维的练习,在表格中加入已知积的变化求因数的变化;拓展练习——因数同时变化,求积等。

《积的变化规律》教学预设 篇4

  各位评委,各位老师:

  你们好!今天我说课的内容是积的变化规律,它选自人教版小学数学四年级上册第58页。

  一、说教材

  积的变化规律是在学生已经学习了三位数乘两位数、用计算器进行计算等知识的基础上进行教学的,它为学生今后学习小数乘法等知识铺平了道路,在本节课中,学生要学习积的变化规律。通过本节课的学习,对于发展学生的运算能力、合情推理能力具有十分重要的作用。

  我们都知道,四年级的学生具有一定的经验,能够将新知识转化为已有的知识,但是呢他们的抽象思维还很弱,在理解积的变化规律的探究过程时会有一定的难度。基于以上对教材的分析和对学情的分析,我将理解积的变化规律确定为本节课的重点,将理解其探究过程确定为本节课的难点。并拟定了以下三维目标:

  1.能理解并掌握积的变化规律,能正确表述积的变化规律,并能正确运用。

  2.经历积的变化规律的探究过程,学会观察、猜想、验证、概括的办法,感受变与不变的思想,发展学生的合情推理能力。

  3.体验自主探索、合作交流的乐趣,培养学生献爱心的好品质。

  二、说教学设想

  为了有效地实现教学目标,在实施教学时,我将努力做到以下两个注重:

  1.注重探究过程的经历:积的变化规律的探究过程需要经历从直观到抽象,从朦胧到清晰的过程,这过程需要学生通过观察、猜想、验证、概括等数学活动,进而理解积的变化规律,积累数学活动经验。

  2.注重变与不变思想的渗透:通过将一个因数不变,另一个因数变化,来探索积的变化规律,发展学生的合情推理能力。

  三、说教学流程

  (一)创设情境,引入新课

  同学们,为了响应学校“节省零花钱,牵手好朋友”的号召,我们班与希望小学四(1)班开展“手拉手,献爱心”活动,请你计算一下,一盒水彩笔6元,如果买2盒要花多少元?买20盒,买200盒呢?请同学们拿出草稿纸列式计算一下,学生会列出算式:6×2=12(元);6×20=120(元);6×200=1200(元)。(设计意图:通过创设“买文具”的具体情境,激活了学生原有的知识,激发了学生的积极性,为探究积的变化规律提供素材,做好铺垫。)

  (二)自主探索,理解规律

  第一层次:感知规律。观察这组算式,你发现了啥?啥变了,啥没变?先独立思考一下,有了想法之后四人一小组相互讨论,之后教师巡视,全班反馈。我会引导学生从上往下进行观察,学生会发现从①式到②式,从②式到③式,一个因数不变,另一个因数乘10,积也乘10;学生也会发现从①式到③式,一个因数不变,另一个因数乘100,积也乘100。那如果从下往上观察,你也发现了啥?学生会发现从式③到②式,从②式到①式,一个因数不变,另一个因数除以10,积也除以10;学生也会发现从③式到①式,一个因数不变,另一个因数除以100,积也除以100。那谁能用一句简洁的话来说一说你发现的规律,先独立说一说,再同桌之间相互说,进而由学生说出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。

  第二层次:提出猜想。同学们发现的规律是不是具有普遍性呢?我们需要再举一些例子来验证一下,看看会不会出现相同的情况,如果有一个例子出现不同的情况,我们就不能把发现当成规律。

  第三层次:验证规律。请每个同学写出3个算式,同桌相互检查,并交流因数和积是怎么样变化的?对于学有余力的学生,还可以让他们在别人的算式后面接着写一些。学生会写出7×12=84、7×6=42、7×3=21;或者6×150=900、6×30=180、6×6=36等等。

  第四层次:归纳结论。同学们,黑板上这么多算式,现在你能完整地说一说这个变化规律?先独立地说一说,再同桌两人相互说,最后我会指名学生说,进而得出:一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。这里除以的数可以为0吗?不能为0,因为0不能作除数。

  第五层次:拓展延伸。刚刚大家已经知道了一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几。那么如果一个因数不变,另一个因数加(或减)几,积是不是也加(或减)几呢?学生会发现这是不成立的,比如7×(12+1)≠(84+1)。

  第六层次:解释应用。我会出示一个神奇缺八数。

  12345679×9=111111111

  12345679×18=222222222

  12345679×27=(        )

  12345679×36=(        )

  12345679×45=(        )

  12345679×( )=(        )

  通过这个神奇缺八数的应用来让学生感受数学的神奇奥秘。

  有效地数学学习是学生学与教师教的统一,在本环节中,通过让学生观察、猜想、验证、概括等数学活动,进而丰富了学生的体会,加深学生对积的变化规律的理解,进而突出重点,突破难点。

  (三)学以致用,分层练习

  我会将做一做作为基础练,以巩固新知识,检查学生是否理解和掌握积的变化规律。

  我会将“一所小学扩建校园,准备将长方形操场的宽度从8变成24米,长不变,扩建前的面积是560平方米,问扩建后的操场面积是多少?”作为综合练,通过这道题来培养学生综合运用知识的能力。

  24×75=1800                     36×104=3744

  (24○6)×(75×6)=1800      (36×4)×(104○4)=3744

  (24○3)×(75○□)=1800     (36○□)×(104○□)=3744

  我会将这道题作为拓展练,通过计算这几道题目,让学生发现一个因数乘几,另一个因数除以相同的数,他们的积是不变的,进而进行拓展,发展学生的抽象思维。

  (四)课堂回眸,内化提升

  第四环节:课堂回眸,内化提升。此时,我会请学生来说说这节课你学习到了啥,你有啥需要提醒其他同学注意的吗?进而结束本节课的课题。

推荐站内搜索:河南省自考成绩查询、执业药师成绩查询入口官网、广东药学院录取分数线、西北工业大学考研成绩查询、事业编报名入口官网、湖北专升本报名时间、护理专升本考试科目、教育考试院、一建考试时间、银行考试试题、

《积的变化规律》教学预设(精选4篇)
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:《积的变化规律》教学预设(精选4篇)
文章链接:https://678999.cn/51013.html
本站资源仅供个人学习交流,请于下载后24小时内删除,不允许用于商业用途,否则法律问题自行承担。

一路高升范文网

提供各类范文...

联系我们联系我们

登录

找回密码

注册