完全平方公式(精选13篇)完全平方公式(精选13篇)完全平方公式(精选13篇)

欢迎光临
我们一直在努力

完全平方公式(精选13篇)

完全平方公式(精选13篇)

完全平方公式 篇1

  教学建议

  一、知识结构

  二、重点、难点分析

  本节教学的重点是的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).是进行代数运算与变形的重要的知识基础。

  1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:

  这两个公式是根据乘方的意义与多项式的乘法法则得到的.

  这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.

  2.只要符合这一公式的结构特征,就可以运用这一公式.

  在运用公式时,有时需要进行适当的变形,比如 可先变形为 或 或者 ,再进行计算.

  在运用公式时,防止发生 这样错误.

  3.运用计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项” 中的2丢掉.

  (3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.

  4. 与 都叫做.为了区别,我们把前者叫做两数和的,后者叫做两数差的.

  三、教法建议

  1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“ ”连结起来,逐项比较、对照,步骤写得完整,便于学生理解怎样正确地使用进行计算.

  2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.

  3.怎样使学生记牢公式呢?我们注意了以下两点.

  (1)既讲“法”,也讲“理”

  在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.

  (2)讲联系、讲对比、讲特点

  对于类似的内容学生容易混淆,例如在本节出现的(a+b)2=a2+b2的错误,其原因是把和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.

  教学设计示例

  一、教学目标

  1.理解的意义,准确掌握两个公式的结构特征.

  2.熟练运用公式进行计算.

  3.通过推导公式训练学生发现问题、探索规律的能力.

  4.培养学生用数形结合的办法解决问题的数学思想.

  5.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学办法:尝试指导法、讲练结合法.

  2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项”2ab中的2丢掉.

  (3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.

  三、重点·难点及解决办法

  (一)重点

  掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.

  (二)难点

  综合运用平方差公式与进行计算.

  (三)解决办法

  强化对公式结构特征的深入理解,在反复练习中掌握公式的应用.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.

  2.引入,让学生用文字概括公式的内容,培养抽象的数字思维能力.

  3.举例分析怎样正确使用,师生共练完成本课时重点内容.

  4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

  七、教学步骤

  (一)明确目标

  本节课重点学习及其应用.

  (二)整体感知

  掌握好的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.

  (三)教学过程

  1.计算导入  ;求得公式

  (1)叙述平方差公式的内容并用字母表示;

  (2)用简便办法计算

  ①103×97

  ②103 × 103

  (3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.

  学生活动:编题、解题,然后两至三个学生说出题目和结果.

  要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘

  法公式”.

  引例:计算 ,

  学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

  或合并为:

  教师引导学生用文字概括公式.

  办法:由学生概括,教师给予肯定、否定或更正,同时板书.

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

  【教法说明】

  ①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.

  ②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识办法,因此推导可以由计算直接得出.

  2.结合图形,理解公式

  根据图形完成下列问题:

  如图:A、B两图均为正方形,

  (1)图A中正方形的面积为____________,(用代数式表示)

  图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。

  (2)图B中,正方形的面积为____________________,

  Ⅲ的面积为______________,

  Ⅰ、Ⅱ、Ⅳ的面积和为____________,

  用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。

  分别得出结论:

  学生活动:在教师引导下回答问题.

  【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。

  3.探索新知,讲授新课

  (1)引例:计算

  教师讲解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,则 、 ,就可用来计算,即

  【教法说明】  引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

  (2)例1  运用计算:

  ① ② ③

  学生活动:学生独立在练习本上尝试解题,3个学生板演.

  【教法说明】  让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

  4.尝试反馈,巩固知识

  练习一

  运用计算:

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (9)

  (l0)

  学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

  5.变式训练,培养能力

  练习二

  运用计算:

  (l) (2) (3) (4)

  学生活动:学生分组讨论,选代表解答.

  练习三

  (1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

  甲的计算过程是:原式

  乙的计算过程是:原式

  丙的计算过程是:原式

  丁的计算过程是:原式

  (2)想一想, 与 相等吗?为啥?

  与 相等吗?为啥?

  学生活动:观察、思考后,回答问题.

  【教法说明】  练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题办法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

  练习四

  运用乘法公式计算:

  (l) (2)

  (3) (4)

  学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

  【教法说明】  这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.

  (四)总结、扩展

  这节课我们学习了乘法公式中的.

  引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

  八、布置作业 

  P133  1,2.(3)(4).

  参考答案

  略.

完全平方公式 篇2

  教学建议

  一、知识结构

  二、重点、难点分析

  本节教学的重点是的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).是进行代数运算与变形的重要的知识基础。

  1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:

  这两个公式是根据乘方的意义与多项式的乘法法则得到的.

  这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.

  2.只要符合这一公式的结构特征,就可以运用这一公式.

  在运用公式时,有时需要进行适当的变形,比如 可先变形为 或 或者 ,再进行计算.

  在运用公式时,防止发生 这样错误.

  3.运用计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项” 中的2丢掉.

  (3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.

  4. 与 都叫做.为了区别,我们把前者叫做两数和的,后者叫做两数差的.

  三、教法建议

  1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“ ”连结起来,逐项比较、对照,步骤写得完整,便于学生理解怎样正确地使用进行计算.

  2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.

  3.怎样使学生记牢公式呢?我们注意了以下两点.

  (1)既讲“法”,也讲“理”

  在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.

  (2)讲联系、讲对比、讲特点

  对于类似的内容学生容易混淆,例如在本节出现的(a+b)2=a2+b2的错误,其原因是把和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.

  教学设计示例

  一、教学目标

  1.理解的意义,准确掌握两个公式的结构特征.

  2.熟练运用公式进行计算.

  3.通过推导公式训练学生发现问题、探索规律的能力.

  4.培养学生用数形结合的办法解决问题的数学思想.

  5.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学办法:尝试指导法、讲练结合法.

  2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项”2ab中的2丢掉.

  (3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.

  三、重点·难点及解决办法

  (一)重点

  掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.

  (二)难点

  综合运用平方差公式与进行计算.

  (三)解决办法

  强化对公式结构特征的深入理解,在反复练习中掌握公式的应用.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.

  2.引入,让学生用文字概括公式的内容,培养抽象的数字思维能力.

  3.举例分析怎样正确使用,师生共练完成本课时重点内容.

  4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

  七、教学步骤

  (一)明确目标

  本节课重点学习及其应用.

  (二)整体感知

  掌握好的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.

  (三)教学过程

  1.计算导入  ;求得公式

  (1)叙述平方差公式的内容并用字母表示;

  (2)用简便办法计算

  ①103×97

  ②103 × 103

  (3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.

  学生活动:编题、解题,然后两至三个学生说出题目和结果.

  要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘

  法公式”.

  引例:计算 ,

  学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

  或合并为:

  教师引导学生用文字概括公式.

  办法:由学生概括,教师给予肯定、否定或更正,同时板书.

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

  【教法说明】

  ①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.

  ②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识办法,因此推导可以由计算直接得出.

  2.结合图形,理解公式

  根据图形完成下列问题:

  如图:A、B两图均为正方形,

  (1)图A中正方形的面积为____________,(用代数式表示)

  图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。

  (2)图B中,正方形的面积为____________________,

  Ⅲ的面积为______________,

  Ⅰ、Ⅱ、Ⅳ的面积和为____________,

  用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。

  分别得出结论:

  学生活动:在教师引导下回答问题.

  【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。

  3.探索新知,讲授新课

  (1)引例:计算

  教师讲解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,则 、 ,就可用来计算,即

  【教法说明】  引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

  (2)例1  运用计算:

  ① ② ③

  学生活动:学生独立在练习本上尝试解题,3个学生板演.

  【教法说明】  让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

  4.尝试反馈,巩固知识

  练习一

  运用计算:

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (9)

  (l0)

  学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

  5.变式训练,培养能力

  练习二

  运用计算:

  (l) (2) (3) (4)

  学生活动:学生分组讨论,选代表解答.

  练习三

  (1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

  甲的计算过程是:原式

  乙的计算过程是:原式

  丙的计算过程是:原式

  丁的计算过程是:原式

  (2)想一想, 与 相等吗?为啥?

  与 相等吗?为啥?

  学生活动:观察、思考后,回答问题.

  【教法说明】  练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题办法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

  练习四

  运用乘法公式计算:

  (l) (2)

  (3) (4)

  学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

  【教法说明】  这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.

  (四)总结、扩展

  这节课我们学习了乘法公式中的.

  引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

  八、布置作业 

  P133  1,2.(3)(4).

  参考答案

  略.

完全平方公式 篇3

  教学目标:

  1.经历探索完全平方公式的过程,进一步发展学生的符号感和推理能力;

  2.会推导完全平方公式,并能运用公式进行简单的计算;

  3.了解完全平方公式的几何背景. 教学重点:

  1.弄清完全平方公式的来源及其结构特点,能用自己的语言说明公式及其特点;

  2.会用完全平方公式进行运算. 教学难点:会用完全平方公式进行运算 教学过程:一、探索练习:

  一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(图略)

  用不同的形式表示实验田的总面积,并进行比较你发现了啥?

  观察得到的式子,想一想:

  (1)(a+b)2等于啥?你能不能用多项式乘法法则说明理由呢?

  (2)(a-b)2等于啥?小颖写出了如下的算式:

  (a-b)2=[a+(—b)]2.

  她是怎么想的?你能继续做下去吗?

  由此归纳出完全平方公式:

  (a+b)2=a2+2ab+b2

  (a-b)2=a2—2ab+b2

  教师在此时应该引导观察完全平方公式的特点,并用自己的言语表达出来.

  例:(利用完全平方公式计算)

  (1)(2x-3)2

  解:(2x-3)2

  =(2x)2-2·(2x)·3+32

  =4x–12x+9二、巩固练习:

  1.下列各式中哪些可以运用完全平方公式计算_______________

  (1) ;(2) ;

  (3) ;(4) .

  2.计算下列各式:

  (1) ;(2) ;(3) ;

  (4) ;(5) ;

  (6) .

  4.填空:

  (1) _____________;(2) ;

  (3) ; 三、提高练习:

  1.求 的值,其中

  2.若                                                                                                                   小结:熟记完全平方公式,会用完全平方公式进行运算. 作业:课本p36习题1.13:1、2. 教学后记:学生基本上能套用平方差公式进行运算,但是呢也有出现以下错误: (1)(a+b)2=a2+b2 (2)(+a)(2-a)=6-a2对公式的真正理解有待强化.

完全平方公式 篇4

  教学建议

  一、知识结构

  二、重点、难点分析

  本节教学的重点是的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).是进行代数运算与变形的重要的知识基础。

  1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:

  这两个公式是根据乘方的意义与多项式的乘法法则得到的.

  这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.

  2.只要符合这一公式的结构特征,就可以运用这一公式.

  在运用公式时,有时需要进行适当的变形,比如 可先变形为 或 或者 ,再进行计算.

  在运用公式时,防止发生 这样错误.

  3.运用计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项” 中的2丢掉.

  (3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.

  4. 与 都叫做.为了区别,我们把前者叫做两数和的,后者叫做两数差的.

  三、教法建议

  1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“ ”连结起来,逐项比较、对照,步骤写得完整,便于学生理解怎样正确地使用进行计算.

  2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.

  3.怎样使学生记牢公式呢?我们注意了以下两点.

  (1)既讲“法”,也讲“理”

  在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.

  (2)讲联系、讲对比、讲特点

  对于类似的内容学生容易混淆,例如在本节出现的(a+b)2=a2+b2的错误,其原因是把和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.

  教学设计示例

  一、教学目标 

  1.理解的意义,准确掌握两个公式的结构特征.

  2.熟练运用公式进行计算.

  3.通过推导公式训练学生发现问题、探索规律的能力.

  4.培养学生用数形结合的办法解决问题的数学思想.

  5.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学办法:尝试指导法、讲练结合法.

  2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项”2ab中的2丢掉.

  (3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.

  三、重点·难点及解决办法

  (一)重点

  掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.

  (二)难点

  综合运用平方差公式与进行计算.

  (三)解决办法

  强化对公式结构特征的深入理解,在反复练习中掌握公式的应用.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.

  2.引入,让学生用文字概括公式的内容,培养抽象的数字思维能力.

  3.举例分析怎样正确使用,师生共练完成本课时重点内容.

  4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

  七、教学步骤 

  (一)明确目标

  本节课重点学习及其应用.

  (二)整体感知

  掌握好的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.

  (三)教学过程 

  1.计算导入  ;求得公式

  (1)叙述平方差公式的内容并用字母表示;

  (2)用简便办法计算

  ①103×97

  ②103 × 103

  (3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.

  学生活动:编题、解题,然后两至三个学生说出题目和结果.

  要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘

  法公式”.

  引例:计算 ,

  学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

  或合并为:

  教师引导学生用文字概括公式.

  办法:由学生概括,教师给予肯定、否定或更正,同时板书.

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

  【教法说明】

  ①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.

  ②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识办法,因此推导可以由计算直接得出.

  2.结合图形,理解公式

  根据图形完成下列问题:

  如图:A、B两图均为正方形,

  (1)图A中正方形的面积为____________,(用代数式表示)

  图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。

  (2)图B中,正方形的面积为____________________,

  Ⅲ的面积为______________,

  Ⅰ、Ⅱ、Ⅳ的面积和为____________,

  用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。

  分别得出结论:

  学生活动:在教师引导下回答问题.

  【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。

  3.探索新知,讲授新课

  (1)引例:计算

  教师讲解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,则 、 ,就可用来计算,即

  【教法说明】  引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

  (2)例1  运用计算:

  ① ② ③

  学生活动:学生独立在练习本上尝试解题,3个学生板演.

  【教法说明】  让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

  4.尝试反馈,巩固知识

  练习一

  运用计算:

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (9)

  (l0)

  学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

  5.变式训练,培养能力

  练习二

  运用计算:

  (l) (2) (3) (4)

  学生活动:学生分组讨论,选代表解答.

  练习三

  (1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

  甲的计算过程是:原式

  乙的计算过程是:原式

  丙的计算过程是:原式

  丁的计算过程是:原式

  (2)想一想, 与 相等吗?为啥?

  与 相等吗?为啥?

  学生活动:观察、思考后,回答问题.

  【教法说明】  练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题办法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

  练习四

  运用乘法公式计算:

  (l) (2)

  (3) (4)

  学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

  【教法说明】  这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.

  (四)总结、扩展

  这节课我们学习了乘法公式中的.

  引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

  八、布置作业 

  P133  1,2.(3)(4).

  参考答案

  略.

完全平方公式 篇5

  教学目标 在具体情景中进一步理解完全平方公式,能正确运用完全平方公式和平方差公式进行计算.重点、难点根据公式的特征及问题的特征选择适当的公式计算.教学过程  一、议一议 1.边长为(a+b)的正方形面积是多少? 2.边长分别为a、b拍的两个正方形面积和是多少? 3.你能比较(1)(2)的结果吗?说明你的理由.师生共同讨论:学生回答(1)(a+b) (2)a +b (3)因为(a+b) =a +2ab+b ,所以 (a+b) -(a +b )=a +2ab+b -a -b =2ab,即(1)中的正方形面积比(2)中的正方形面积大.二、做一做例1.       利用完全平方式计算1. 102 ,   2. 197 师:要利用完全平方公式计算,则要创设符合公式特征的两数和或两数差的平方,且计算尽可能简便.学生活动:在练习本上演示此题.让学生叙述,教师板书.解:1.102 =(100+2)             2.197 =(200-3) =100 +2 lOO 2+2,          =200 -2 2O0 3十3 ,=10000+400+4                 =40000-1200+9 =10404                       =38809 例2.计算:1.(x-3) -x                  2.(2a+b- )(2a-b+ )师生共同分析:1中(x-3) 可利用完全平方公式.学生动笔解答第1题.教师根据学生解答情况,板书如下:解:1. (x-3) -x =x +6x+9-x =6x+9师问:此题还有其他办法解吗?引导学生逆用平方差公式,进而培养学生创新精神.学生活动:分小组讨论第(2)题的解法.此题学生解答,难度较大.教师要引导学生使用加法结合律,为使用公式创造条件.学生小组交流派代表进行全班交流.最后教师板书解题过程.解:2. (2a+b- )(2a-b+ )=[2a+(b- )][2a-(b- )]=(2a) -(b- ) =4a -(b-3b+ )=4a -b +3b- 三、试一试计算:                         1. (a+b+c)           2. (a+b) 师生共同分析:对于1要把多项式完全平方转化为二项式的完全平方,要使用加法结合律,为使用完全平方公式创造条件.如(a+b+c) =[a+(b+c)] 对于(2)可化为(a+b) =(a+b)(a+b) .学生动笔:在练习本上解答,并与同伴交流你的做法.学生叙述,教师板书.解:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c =a +2ab+b +2ac+2bc+c =a +b +c +2ab+2ac+2bc 四、随堂练习 P38 1五、小结本节课进一步学习了完全平方公式,在应用此公式运算时注意以下几点.        1.使用完全平方公式首先要熟记公式和公式的特征,不能出现(a±b) =a ±b 的错误,或(a±b) =a ±ab+b (漏掉2倍)等错误.2.要能根据公式的特征及题目的特征灵活选择适当的公式计算.3.用加法结合律,可为使用公式创造了条件.利用了这种办法,可以把多项式的完全平方转化为二项式的完全平方.六、作业 课本习题1.14 P38   1、2、3.七、教后反思§1.9 整式的除法第一课时   单项式除以单项式教学目标 1.经历探索单项式除法的法则过程,了解单项式除法的意义.2.理解单项式除法法则,会进行单项式除以单项式运算.重点、难点重点:单项式除以单项式的运算.难点:单项式除以单项式法则的理解.教学过程 一、议一议,探索单项式除以单项式法则(出示投影1)计算下列各题,并说说你的理由    1. x y÷x ,   (8m n )÷(2m n) ,   (a b c)÷(3a b).师生共同分析:此题是做除法运算,可以从两方面思考:根据除法是乘法的逆运算,将除法问题转化为乘法问题去解决,即(   )·x =x y,由单项式乘以单项式法则可得(x y)·x =x y,因此,x y÷x =x y . 另外,根据同底数幂的除法法则,由约分也可得 =x y.学生动笔:写出(2)(3)题的结果.  教师板书: x y÷x =x y, (8m n )÷(2m n)=4n ,   (a b c)÷(3a b)=a bc师:以上运算是单项式除以单项式的运算,你能说说怎样进行单项式除以单项式的运算?学生活动:小组讨论,教师引导学生从系数、同底数幂、只在被除式含有的字母三方面思考,讨论充分后,由一名同学叙述,其余同学补充纠正.出示单项式除法法则(投影显示)单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.二、做一做,巩固新知例1计算1.(- x y )÷(3 x y)          2.(10a b c )÷(5a bc)3.(2x y) (-7xy )÷(14 x y )   4.(2a+b) ÷(2a+b) 学生活动:在练习本上计算.教师引导学生按法则进行运算,首先确定它们的系数,把系数的商作为商的系数,其次确定相同的字母,在被除式中出现的字母作为商中可能含有的字母,相同字母的指数之差作为商式中对应字母的指数,只在被除式中含有的字母指数不变,最后化简.第(1)(2)题对照法则进行,第(3)题要按运算顺序进行.第(4)题先把(2a+b)看作一个整体 (一个字母)相除,后用完全平方公式计算.教师板书如下:解: 1.(- x y )÷(3 x y)       2.(10a b c )÷(5a bc)=(- ÷3)x y             =(10÷5)a b c =- y                       =2ab c        3.(2x y) (-7xy )÷(14 x y )   4.(2a+b) ÷(2a+b) =8x y (-7xy )÷(14 x y )      =(2a+b) =-56x y ÷(14 x y )           =(2a+b)    =-4x y                         =4a +4ab+b 三、随堂练习 P40 1学生活动:让四名同学到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正.教师巡回检查,对存在问题及时更正.待四名板演同学完成后,师生共同订正.四、小结本节课主要学习了单项式除以单项式的运算.在运用法则计算时应注意以下几点:1.系数相除与同底数幂相除的区别;2.符号问题;3.指数相同的同底数幂相除商为1而不是0;4.在混合运算中,要注意运算的顺序.五、作业 课本习题1.15.P41  1、2. 3六、教后反思 

完全平方公式 篇6

  教学建议

  一、知识结构

  二、重点、难点分析

  本节教学的重点是的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).是进行代数运算与变形的重要的知识基础。

  1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:

  这两个公式是根据乘方的意义与多项式的乘法法则得到的.

  这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.

  2.只要符合这一公式的结构特征,就可以运用这一公式.

  在运用公式时,有时需要进行适当的变形,比如 可先变形为 或 或者 ,再进行计算.

  在运用公式时,防止发生 这样错误.

  3.运用计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项” 中的2丢掉.

  (3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.

  4. 与 都叫做.为了区别,我们把前者叫做两数和的,后者叫做两数差的.

  三、教法建议

  1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“ ”连结起来,逐项比较、对照,步骤写得完整,便于学生理解怎样正确地使用进行计算.

  2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.

  3.怎样使学生记牢公式呢?我们注意了以下两点.

  (1)既讲“法”,也讲“理”

  在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.

  (2)讲联系、讲对比、讲特点

  对于类似的内容学生容易混淆,例如在本节出现的(a+b)2=a2+b2的错误,其原因是把和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.

  教学设计示例

  一、教学目标 

  1.理解的意义,准确掌握两个公式的结构特征.

  2.熟练运用公式进行计算.

  3.通过推导公式训练学生发现问题、探索规律的能力.

  4.培养学生用数形结合的办法解决问题的数学思想.

  5.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学办法:尝试指导法、讲练结合法.

  2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项”2ab中的2丢掉.

  (3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.

  三、重点·难点及解决办法

  (一)重点

  掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.

  (二)难点

  综合运用平方差公式与进行计算.

  (三)解决办法

  强化对公式结构特征的深入理解,在反复练习中掌握公式的应用.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.

  2.引入,让学生用文字概括公式的内容,培养抽象的数字思维能力.

  3.举例分析怎样正确使用,师生共练完成本课时重点内容.

  4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

  七、教学步骤 

  (一)明确目标

  本节课重点学习及其应用.

  (二)整体感知

  掌握好的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.

  (三)教学过程 

  1.计算导入  ;求得公式

  (1)叙述平方差公式的内容并用字母表示;

  (2)用简便办法计算

  ①103×97

  ②103 × 103

  (3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.

  学生活动:编题、解题,然后两至三个学生说出题目和结果.

  要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘

  法公式”.

  引例:计算 ,

  学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

  或合并为:

  教师引导学生用文字概括公式.

  办法:由学生概括,教师给予肯定、否定或更正,同时板书.

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

  【教法说明】

  ①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.

  ②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识办法,因此推导可以由计算直接得出.

  2.结合图形,理解公式

  根据图形完成下列问题:

  如图:A、B两图均为正方形,

  (1)图A中正方形的面积为____________,(用代数式表示)

  图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。

  (2)图B中,正方形的面积为____________________,

  Ⅲ的面积为______________,

  Ⅰ、Ⅱ、Ⅳ的面积和为____________,

  用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。

  分别得出结论:

  学生活动:在教师引导下回答问题.

  【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。

  3.探索新知,讲授新课

  (1)引例:计算

  教师讲解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,则 、 ,就可用来计算,即

  【教法说明】  引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

  (2)例1  运用计算:

  ① ② ③

  学生活动:学生独立在练习本上尝试解题,3个学生板演.

  【教法说明】  让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

  4.尝试反馈,巩固知识

  练习一

  运用计算:

  (1) (2) (3)

  (4) (5) (6)

  (7) (8) (9)

  (l0)

  学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

  5.变式训练,培养能力

  练习二

  运用计算:

  (l) (2) (3) (4)

  学生活动:学生分组讨论,选代表解答.

  练习三

  (1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

  甲的计算过程是:原式

  乙的计算过程是:原式

  丙的计算过程是:原式

  丁的计算过程是:原式

  (2)想一想, 与 相等吗?为啥?

  与 相等吗?为啥?

  学生活动:观察、思考后,回答问题.

  【教法说明】  练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题办法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

  练习四

  运用乘法公式计算:

  (l) (2)

  (3) (4)

  学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

  【教法说明】  这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.

  (四)总结、扩展

  这节课我们学习了乘法公式中的.

  引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

  八、布置作业 

  P133  1,2.(3)(4).

  参考答案

  略.

完全平方公式 篇7

  教学目标:

  1.经历探索完全平方公式的过程,进一步发展符号感和推理能力.

  2.会运用完全平方公式进行一些数的简便运算.

  3.综合运用平方差和完全平方公式进行整式的简便运算. 教学重点:

  1.运用完全平方公式进行一些数的简便运算;

  2.综合运用平方差和完全平方公式进行整式的简便运算. 教学难点:灵活运用平方差和完全平方公式进行整式的简便运算. 活动准备:学生熟记公式 教学过程:(一)课前复习:

  算下列各题:

  1. ;2. ;3. ;4. ;

  5. ;6. ;7. .

  通过教科书中一个有趣的分糖果场景,使学生进一步巩固 ,同时帮助学生进一步理解 与 的关系. (二)提出问题,引入新课:

  若没有计算器的情况下,你能很快算出9982的结果吗? (三)新课:

  1.例:利用完全平方公式计算:(1)1022;(2)1972.

  先分析,再课件演示解答过程

  2.练习:利用完全平方公式计算:(1)982;(2)2032.

  3.例:计算:(1) ;(2) .

  办法一:按运算顺序先用完全平方公式展开,再合并同类项;

  办法二:先利用平方差公式,再合并同类项.

  注意:(2)中按完全平方公式展开后,必须加上括号

  4.练习:计算:(1) ;

  (2) ;

  (3) .

  5.例:计算:(1) ;

  (2) .

  练习: .

  6.补例:若 ,则k=_________;

  若 是完全平方式,则k=________. (四)小结:

  利用完全平方公式可以进行一些简便的计算,并体会公式中

  的字母既可以表示单项式,也可以表示多项式. (五)作业:第38页习题1、2、3

  教后记:

  简便计算完成得较好,但形如 的计算多数同学没有掌握,不会分组拆项.

完全平方公式 篇8

  课题:完全平方公式

  一、教材分析:

  (一)教材的地位与作用

  本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:

  (1)整式是初中代数研究范围内的一块重要内容,整式的运算也是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理办法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。

  (2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。

  (3)公式的发现与验证给学生体验规律发现的基本办法和基本过程提供了很好模式。

  (二)教学目标 的确定

  在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标 如下:

  1、知识目标:

  理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

  2、能力目标:

  渗透建模、化归、换元、数形结合等思想办法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。

  3、情感目标:

  培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。

  (三)教学重点与难点

  完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:

  本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

  本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。

  二、教学办法与手段

  (一)教学办法:

  针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生积极地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能积极参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和气氛,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

  采用小组讨论,大组竞赛等多种形式激发学习兴趣。

  (二)教学手段:

  利用投影仪辅助教学,突破教学难点 ,公式的推导变成生动、形象、直观,提高教学效率。

  (三)学法指导:

  在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的积极性和积极性。

  三、教材处理

  根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的办法进行,再通过分层次练习,加以巩固。

  四、教学程序

  教  学  过  程

  设计意图

  一、 创设情境,引出课题

  如图,有一个边长为a米的正方形广场,则这个广场的面积是多少?

  a

  若在这个广场的相邻两边铺一条宽为10米的道路,则面积是多少?

  a    10

  引导学生利用图形分割求面积。

  另一方面:正方形

  10    10a    102          面积为(a+10)2, 所以:

  (a+10)2=a2+20a+102

  a    a2    10a        

  a    10

  b   ab     b2           把10替换为b,

  (a+b)2=a2+2ab+b2

  a    a2    ab          提出课题

  a    b

  通过较为简单的几何图形面积计算和较熟悉的整式乖法计算。引入本节学习内容(a+b)·(a+b)

  (根据初一学生年龄特点,采用图形变化来激发学生学习兴趣)

  问题是知识、能力的生长点,通过富有实际意义的问题能激活学生原有认知,促使学生积极地进行探索和思考。

  对公式(a+b)2=a2+2ab+b2的形式进行初步认识,接触

  教  学  过  程

  设计意图

  二、交流对话,探求新知

  1、推导两数和的完全平方公式

  计算(a+b)2

  解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  2、理解公式特征

  ①算式:两数和的平方

  ②积:两个数的平方和加上这两个数积的2倍

  3、语言叙述

  (a+b)2=a2+2ab+b2用语言怎样叙述

  4、公式(a-b)2=a2-2ab+b2教学

  ①利用多项式乘法 (a-b)2=(a-b)(a-b)

  ②利用换元思想   (a-b)2=[a+(-b)]2

  ③利用图形          

  b

  a 

  (a-b)    b

  a  

  5、学生总结、归纳:

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  这两个公式叫做完全平方公式,两数和(或差)的平方,等于这两数的平方和,加上(或减去)这两数积的2倍。

  6、公式中的字母含义的理解。(学生回答)

  (x+2y)2是哪两个数的和的平方?

  (x+2y)2=(   )2+2(   )(   )+(   )2

  (2x-5y)2是哪两个数的差的平方?

  (2x+5y)2=(   )2+2(   )(   )+(   )2

  变式  (2x-5y)2可以看成是哪两个数的和的平方?

  利用多项式乘法推导公式,使学生了解公式的来源以及理解乘法公式的本质。

  组织学生小组讨论,使学生明确公式特征,加深对公式表象的理解。

  由学生对公式

  (a+b)2=a2+2ab+b2进行口头语言叙述。

  (1)说明:教师提供三种模式,由学生选择一种去解决。培养学生学习的积极性,开阔学生的思路。(2)同时对渗透数形结合思想、换元思想,也是分散、分步突破本节的难点的第一个层次;(3)体会辩证统一的唯物主义观点;(4)正确引导学生学习时知识的正迁移。

  使学生学会对公式的正确表述,有利于学生正确用于计算之中,此时也可以让学生对两个公式特点进行讨论归纳,适当总结一定的口诀:“头平方,尾平方,两倍的乘积中间放。”

  加深学生对公式中的字母含义的理解,明确字母意义的广泛性

  教  学  过  程

  设计意图

  三、整理新知形成结构

  1、完全平方公式并分析公式左右的特征。

  2、换元的基本想法

  四、应用新知,体验成功

  1、例1教学:用完全平方公式计算

  (1)(a+3)2  (2)(y- )2  (3)(-2x+t)2  (4)(-3x-4y)2

  学生直接运用公式计算,教师板演,讲评时边口述理由,针对第(4)题(-3x-4y)2可以看成是-3x与4y差的平方,也可以看成-3x与-4y和的平方

  提出以下问题:

  (1)可否看成两数和的平方,运用两数和的平方公式来计算?

  (2)可否看成两数差的平方,运用两数差的平方公式来计算?

  (3)能不能进行符号转化?如(-3x-4y)2=(3x+4y)2

  2、公式巩固

  (1)同桌同学互相编一道用完全平方公式计算题目,然后解答。

  (2)下列各式的计算,错在哪里?应怎么样改正?

  ①(a+b)2=a2+b2   ②(a-b)2=a2-b2

  ③(a-2b)2=a2+2ab+2b2

  3、练习:运用完全平方公式计算:(学生板演)

  ①(a+5)2     ②(3+x)2      ③(y-2)2  ④(7-y)2

  ⑤(2x+3y)2⑥(-2x-3y)2 ⑦(3- )2 ⑧(- - )2

  4、例2,运用完全平方公式计算:(1)1012  (2)982

  5、练习:运用完全平方公式计算

  (1)912   (2)7982   (3)(10 )2

  6、讨论:(1-2x)(-1-2x), (x-2y)(-2y+1)怎样计算

  五、公式拓展,鼓励探究

  1、a2+b2=(a+b)2-______   a2+b2+ _______=(a+b)2

  a2+b2+ ________ =(a-b)2

  2、(a+b)2-(a-b)2=______   3、(a+b+c)2=________

  4、提出思考题:(a+b)3=?  (a+b)4=?

  5、已知 求 的值。

  6、已知: ,求 , 的值。

  6. 已知 ,求x和y的值。

  (1)遵循及时巩固原则。(2)针对初一学生注意力不能持久的特点。(3)形成知识网络,有利于学生进一步学习公式的运用

  (1)直接运用公式进行计算。(2)进一步帮助学生掌握换元法。(3)进行符号转化的变换,加深学生对公式理解的深度,也为进一步学习其它知识打好基础。

  对这几个式子的辨析目的在于防止学生对以前学过的如(ab)2=a2b2的公式的负迁移作用

  讲练结合

  (1)合作学习,四人小组讨论(教师逐步引导到运用完全平方公式计算)学生讲自己解题的想法和步骤,培养语言表达能力。(2)体会公式实际运用作用,增加学习兴趣

  进一步辨析完全平方公式与平方差公式的区别

  公式变形利于各种计算

  提出一个问题,引导学生用学习研究完全平方公式的办法去研究公式的拓展变形问题。如:三项式的平方,两项式的立方、四次方等,培养学生的严谨的治学态度和钻研精神。

  教  学  过  程

  设计意图

  六、小结提高,知识升华

  1、两个公式 (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  2、两种推导办法:多项式乘法导出;图形面积导出

  3、换元法与转化

  七、作业 布置,分层落实

  1、阅读教材  6.17内容

  2、见省编作业 本 6.17

  3、对(a+b)2,(a+b)3 ……的展开式从项数、系数方面进行研究

  由学生自己小结本节所学知识、办法等。教师根据学生回答情况作出补充。

  (1)作业 1主要以培养学习良好的学习习惯为目的。(2)结合学生实际情况,贯彻面向全体学生,因材施教原则。作业 2要求全体学都能完成。作业 3为选做题,部分学有余力的学生可选做。在减轻学生的课业负担同时,注重人本思想,以学生的能力发展为重。 也能满足不同层次学生的不同要求。

  附:板书设计 与时间大致安排

  屏  幕

  课题

  公式……例题

  学生板演

  本课时的时间大致安排:

  引入课题3分钟左右,探求新知15分钟左右,整理新知2分钟左右,应用新知15分钟左右,公式拓展5分钟左右,小结作业 布置约5分钟。

  设计说明

  本节课的教学设计注重体现以教师为主导、学生为主体,以发展学生为本的思想。遵循初一学生的心理特点(形象思维大于抽象思维)和认知规律(从特殊到一般)。结合学生实际学习情况(已较熟练掌握多项式乘法,并本节之前也已经学习了平方差公式)进行本课设计的。下面就设计作几点简单说明:

  1、完全平方公式的本质是多项式乘法,它的推导办法与平方差公式推导办法是一样的,根据乘方的意义与多项式乘法法则,就可以推导出完全平方公式。因此在两数和的平方公式推导中,采取先由学生自己计算(a+b)2,然后教师点题的方式,再加上引课时已经由几何图形面积的计算得出的结论(a+b)2=a2+2ab+b2,学生是容易接受的。在两数差的平方公式推导中,更进一步,由学生自主选择一种模式解决、验证,增加了数学课堂的开放性。

  2、充分发挥学生自主学习、探究的能力。从引入时图形变换的教师启发引导,到公式验证、推导时的学生自主探索,再到学生与学生之间的合作交流学习,都突出了学生是探索性学习活动的主体。在公式拓展中还提出了思考题(a+b)3=?(a+b)4=?……(a+b+c)2=?培养学生严谨的治学态度和钻研探索的精神。同时让学生明确本节课不仅要学会完全平方公式,更加要学会完全平方公式的推导办法,即授学生以渔,让学生学会学习。

  3、在练习设计与作业 布置中都体现了分层次教学的要求,让不同层次的学生都能积极的参与并都能得到充分的发展。同时也遵循了面向全体与因材施教相结合的教学原则。

  4、充分挖掘本课时教材中的隐含的各种数学思想,在教学中渗透如建模思想、数形结合思想、换元思想、化归思想,注重培养学生的发现问题、解决问题的能力、求简意识、应用意识、创新能力等各方面能力。

  5、公式(a-b)2=a2-2ab+b2可以作为(a+b)2=a2+2ab+b2的一个应用,这样两个公式便统一为一个公式,这样做有助于学生的记忆和理解,但作为应用,实践表明还是把它们分开来用的好。因此,教学中在公式(a-b)2=a2-2ab+b2的推导过程就有意识的安排与(a+b)2=a2-2ab+b2统一,但也它与(a+b)2=a2+2ab+b2同等的对待。最后在小结时,对于两者的联系再加以说明,让学生领会到数学中的辩证统一思想。

  课题:完全平方公式

  一、教材分析:

  (一)教材的地位与作用

  本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。它是在学生学习了代数式的概念、整式的加减法、幂的运算和整式的乘法后进行学习的,其地位和作用主要体现在以下几方面:

  (1)整式是初中代数研究范围内的一块重要内容,整式的运算也是整式中一大主干,乘法公式则是在学习了单项式乘法、多项式乘法之后来进行学习的;一方面是对多项式乘法中出现的较为特殊的算式的一种归纳、总结;另一方面,乘法公式的推导是初中代数中运用推理办法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处。

  (2)乘法公式是后续学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习因式分解、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的功能。

  (3)公式的发现与验证给学生体验规律发现的基本办法和基本过程提供了很好模式。

  (二)教学目标 的确定

  在素质背景下的数学教学应以学生的发展为本,学生的能力培养为重,尤其是创新、创造能力,以及培养学生良好的个性品质等。根据以上指导思想,同时参照义务教育阶段《数学课程标准》的要求,确定本节课的教学目标 如下:

  1、知识目标:

  理解公式的推导过程,了解公式的几何背景,会应用公式进行简单的计算。

  2、能力目标:

  渗透建模、化归、换元、数形结合等思想办法,培养学生的发现能力、求简意识、应用意识、解决问题的能力和创新能力。

  3、情感目标:

  培养学生敢于挑战,勇于探索的精神和善于观察,大胆创新的思维品质。

  (三)教学重点与难点

  完全平方公式和平方差公式一样是主要的乘法公式,其本质是多项式乘法,是学生今后用于计算的一种重要依据,因此,本节教学的重点与难点如下:

  本节的重点是体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。

  本节的难点是从广泛意义上理解公式中的字母含义,判明要计算的代数式是哪两数的和(差)的平方。

  二、教学办法与手段

  (一)教学办法:

  针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生积极地进行观察、猜测、验证和交流。同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能积极参与并都能得到充分的发展。边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和气氛,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

  采用小组讨论,大组竞赛等多种形式激发学习兴趣。

  (二)教学手段:

  利用投影仪辅助教学,突破教学难点 ,公式的推导变成生动、形象、直观,提高教学效率。

  (三)学法指导:

  在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的积极性和积极性。

  三、教材处理

  根据本节内容特点,本着循序渐进的原则,我将以“边长为(a+b)的正方形面积是多少?”这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,我将为学生提供三种不同的思路,由学生自己选择学习、理解,然后再归纳的办法进行,再通过分层次练习,加以巩固。

  四、教学程序

  教  学  过  程

  设计意图

  一、 创设情境,引出课题

  如图,有一个边长为a米的正方形广场,则这个广场的面积是多少?

  a

  若在这个广场的相邻两边铺一条宽为10米的道路,则面积是多少?

  a    10

  引导学生利用图形分割求面积。

  另一方面:正方形

  10    10a    102          面积为(a+10)2, 所以:

  (a+10)2=a2+20a+102

  a    a2    10a        

  a    10

  b   ab     b2           把10替换为b,

  (a+b)2=a2+2ab+b2

  a    a2    ab          提出课题

  a    b

  通过较为简单的几何图形面积计算和较熟悉的整式乖法计算。引入本节学习内容(a+b)·(a+b)

  (根据初一学生年龄特点,采用图形变化来激发学生学习兴趣)

  问题是知识、能力的生长点,通过富有实际意义的问题能激活学生原有认知,促使学生积极地进行探索和思考。

  对公式(a+b)2=a2+2ab+b2的形式进行初步认识,接触

  教  学  过  程

  设计意图

  二、交流对话,探求新知

  1、推导两数和的完全平方公式

  计算(a+b)2

  解:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2

  2、理解公式特征

  ①算式:两数和的平方

  ②积:两个数的平方和加上这两个数积的2倍

  3、语言叙述

  (a+b)2=a2+2ab+b2用语言怎样叙述

  4、公式(a-b)2=a2-2ab+b2教学

  ①利用多项式乘法 (a-b)2=(a-b)(a-b)

  ②利用换元思想   (a-b)2=[a+(-b)]2

  ③利用图形          

  b

  a 

  (a-b)    b

  a  

  5、学生总结、归纳:

  (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  这两个公式叫做完全平方公式,两数和(或差)的平方,等于这两数的平方和,加上(或减去)这两数积的2倍。

  6、公式中的字母含义的理解。(学生回答)

  (x+2y)2是哪两个数的和的平方?

  (x+2y)2=(   )2+2(   )(   )+(   )2

  (2x-5y)2是哪两个数的差的平方?

  (2x+5y)2=(   )2+2(   )(   )+(   )2

  变式  (2x-5y)2可以看成是哪两个数的和的平方?

  利用多项式乘法推导公式,使学生了解公式的来源以及理解乘法公式的本质。

  组织学生小组讨论,使学生明确公式特征,加深对公式表象的理解。

  由学生对公式

  (a+b)2=a2+2ab+b2进行口头语言叙述。

  (1)说明:教师提供三种模式,由学生选择一种去解决。培养学生学习的积极性,开阔学生的思路。(2)同时对渗透数形结合思想、换元思想,也是分散、分步突破本节的难点的第一个层次;(3)体会辩证统一的唯物主义观点;(4)正确引导学生学习时知识的正迁移。

  使学生学会对公式的正确表述,有利于学生正确用于计算之中,此时也可以让学生对两个公式特点进行讨论归纳,适当总结一定的口诀:“头平方,尾平方,两倍的乘积中间放。”

  加深学生对公式中的字母含义的理解,明确字母意义的广泛性

  教  学  过  程

  设计意图

  三、整理新知形成结构

  1、完全平方公式并分析公式左右的特征。

  2、换元的基本想法

  四、应用新知,体验成功

  1、例1教学:用完全平方公式计算

  (1)(a+3)2  (2)(y- )2  (3)(-2x+t)2  (4)(-3x-4y)2

  学生直接运用公式计算,教师板演,讲评时边口述理由,针对第(4)题(-3x-4y)2可以看成是-3x与4y差的平方,也可以看成-3x与-4y和的平方

  提出以下问题:

  (1)可否看成两数和的平方,运用两数和的平方公式来计算?

  (2)可否看成两数差的平方,运用两数差的平方公式来计算?

  (3)能不能进行符号转化?如(-3x-4y)2=(3x+4y)2

  2、公式巩固

  (1)同桌同学互相编一道用完全平方公式计算题目,然后解答。

  (2)下列各式的计算,错在哪里?应怎么样改正?

  ①(a+b)2=a2+b2   ②(a-b)2=a2-b2

  ③(a-2b)2=a2+2ab+2b2

  3、练习:运用完全平方公式计算:(学生板演)

  ①(a+5)2     ②(3+x)2      ③(y-2)2  ④(7-y)2

  ⑤(2x+3y)2⑥(-2x-3y)2 ⑦(3- )2 ⑧(- - )2

  4、例2,运用完全平方公式计算:(1)1012  (2)982

  5、练习:运用完全平方公式计算

  (1)912   (2)7982   (3)(10 )2

  6、讨论:(1-2x)(-1-2x), (x-2y)(-2y+1)怎样计算

  五、公式拓展,鼓励探究

  1、a2+b2=(a+b)2-______   a2+b2+ _______=(a+b)2

  a2+b2+ ________ =(a-b)2

  2、(a+b)2-(a-b)2=______   3、(a+b+c)2=________

  4、提出思考题:(a+b)3=?  (a+b)4=?

  5、已知 求 的值。

  6、已知: ,求 , 的值。

  6. 已知 ,求x和y的值。

  (1)遵循及时巩固原则。(2)针对初一学生注意力不能持久的特点。(3)形成知识网络,有利于学生进一步学习公式的运用

  (1)直接运用公式进行计算。(2)进一步帮助学生掌握换元法。(3)进行符号转化的变换,加深学生对公式理解的深度,也为进一步学习其它知识打好基础。

  对这几个式子的辨析目的在于防止学生对以前学过的如(ab)2=a2b2的公式的负迁移作用

  讲练结合

  (1)合作学习,四人小组讨论(教师逐步引导到运用完全平方公式计算)学生讲自己解题的想法和步骤,培养语言表达能力。(2)体会公式实际运用作用,增加学习兴趣

  进一步辨析完全平方公式与平方差公式的区别

  公式变形利于各种计算

  提出一个问题,引导学生用学习研究完全平方公式的办法去研究公式的拓展变形问题。如:三项式的平方,两项式的立方、四次方等,培养学生的严谨的治学态度和钻研精神。

  教  学  过  程

  设计意图

  六、小结提高,知识升华

  1、两个公式 (a+b)2=a2+2ab+b2

  (a-b)2=a2-2ab+b2

  2、两种推导办法:多项式乘法导出;图形面积导出

  3、换元法与转化

  七、作业 布置,分层落实

  1、阅读教材  6.17内容

  2、见省编作业 本 6.17

  3、对(a+b)2,(a+b)3 ……的展开式从项数、系数方面进行研究

  由学生自己小结本节所学知识、办法等。教师根据学生回答情况作出补充。

  (1)作业 1主要以培养学习良好的学习习惯为目的。(2)结合学生实际情况,贯彻面向全体学生,因材施教原则。作业 2要求全体学都能完成。作业 3为选做题,部分学有余力的学生可选做。在减轻学生的课业负担同时,注重人本思想,以学生的能力发展为重。 也能满足不同层次学生的不同要求。

  附:板书设计 与时间大致安排

  屏  幕

  课题

  公式……例题

  学生板演

  本课时的时间大致安排:

  引入课题3分钟左右,探求新知15分钟左右,整理新知2分钟左右,应用新知15分钟左右,公式拓展5分钟左右,小结作业 布置约5分钟。

  设计说明

  本节课的教学设计注重体现以教师为主导、学生为主体,以发展学生为本的思想。遵循初一学生的心理特点(形象思维大于抽象思维)和认知规律(从特殊到一般)。结合学生实际学习情况(已较熟练掌握多项式乘法,并本节之前也已经学习了平方差公式)进行本课设计的。下面就设计作几点简单说明:

  1、完全平方公式的本质是多项式乘法,它的推导办法与平方差公式推导办法是一样的,根据乘方的意义与多项式乘法法则,就可以推导出完全平方公式。因此在两数和的平方公式推导中,采取先由学生自己计算(a+b)2,然后教师点题的方式,再加上引课时已经由几何图形面积的计算得出的结论(a+b)2=a2+2ab+b2,学生是容易接受的。在两数差的平方公式推导中,更进一步,由学生自主选择一种模式解决、验证,增加了数学课堂的开放性。

  2、充分发挥学生自主学习、探究的能力。从引入时图形变换的教师启发引导,到公式验证、推导时的学生自主探索,再到学生与学生之间的合作交流学习,都突出了学生是探索性学习活动的主体。在公式拓展中还提出了思考题(a+b)3=?(a+b)4=?……(a+b+c)2=?培养学生严谨的治学态度和钻研探索的精神。同时让学生明确本节课不仅要学会完全平方公式,更加要学会完全平方公式的推导办法,即授学生以渔,让学生学会学习。

  3、在练习设计与作业 布置中都体现了分层次教学的要求,让不同层次的学生都能积极的参与并都能得到充分的发展。同时也遵循了面向全体与因材施教相结合的教学原则。

  4、充分挖掘本课时教材中的隐含的各种数学思想,在教学中渗透如建模思想、数形结合思想、换元思想、化归思想,注重培养学生的发现问题、解决问题的能力、求简意识、应用意识、创新能力等各方面能力。

  5、公式(a-b)2=a2-2ab+b2可以作为(a+b)2=a2+2ab+b2的一个应用,这样两个公式便统一为一个公式,这样做有助于学生的记忆和理解,但作为应用,实践表明还是把它们分开来用的好。因此,教学中在公式(a-b)2=a2-2ab+b2的推导过程就有意识的安排与(a+b)2=a2-2ab+b2统一,但也它与(a+b)2=a2+2ab+b2同等的对待。最后在小结时,对于两者的联系再加以说明,让学生领会到数学中的辩证统一思想。

完全平方公式 篇9

  新疆 乌鲁木齐市第54中学 于莲凤

  一、教学内容:

  本节内容是人教版教材八年级上册,第十四章第2节乘法公式的第二课时—— 完全平方公式。

  二、教材分析:

  完全平方公式是乘法公式的重要组成部分,也是乘法运算知识的升华,它是在学生学习整式乘法后,对多项式乘法中出现的一种特殊的算式的总结, 体现了从一般到特殊的思想办法。完全平方公式是学生后续学好因式分解、分式运算的必备知识,它还是配办法的基本模式,为以后学习一元二次方程、函数等知识奠定了基础,所以说完全平方公式属于代数学的基础地位。

  本节课内容是在学生掌握了平方差公式的基础上,研究完全平方公式的推导和应用,公式的发现与验证为学生体验规律探索提供了一种较好的模式,培养学生逐步形成严密的逻辑推理能力。完全平方公式的学习对简化某些代数式的运算,培养学生的求简意识很有帮助。使学生了解到完全平方公式是有力的数学工具。

  重点:掌握完全平方公式,会运用公式进行简单的计算。

  难点:理解公式中的字母含义,即对公式中字母a、b的理解与正确应用。

  三、教学目标

  (1)经历探索完全平方公式的推导过程,掌握完全平方公式,并能正确运用公式进行简单计算。

  (2)进一步发展学生的符号感和推理能力,了解公式的几何背景,感受数与形之间的联系,学会独立思考。

  (3)通过推导完全平方公式及分析结构特征,培养学生观察、分析、归纳的能力,学会与他人合作交流,体验解决问题的多样性。

  (4) 体验完全平方公式可以简化运算进而激发学生的学习兴趣;在自主探究、合作交流的学习过程中获得体验成功的喜悦,增强学习数学的自信心。

  四、学情分析与教法学法

  学情分析:课程标准提出数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,本节课就是在前面的学习中,学生已经掌握了整式的乘法运算及平方差公式的基础上开展的,具备了初步的总结归纳能力。另外,14岁的中学生充满了好奇心,有较强的求知欲、创造欲、表现欲,所以只有能调动学生的学习热情,本节内容才较易掌握。但八年级学生的探究能力有差异,逻辑推理能力也有待于提高,而且易粗心马虎,这都是本节课要注意的问题。

  学法:以自主探究为主要学习方式,使学生在独立思考、归纳总结、合作交流

  总结反思中获得数学知识与技能。

  教法:以启发引导式为主要教学方式,在引导探究、归纳总结、典例精析、合作交流的教学过程中,教师做好组织者和引导者,让学生在老师的指导下处于积极探究的学习状态。

  五、教学过程(略)

  六、教学评价

  在教学中,教师在精心设置教学环节中,做到以学生为主体,做好组织者和引导者,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。教师通过情境引入、提供问题引导学生从已有的知识为出发点,自主探究,发现问题,深入思考。学生解决问题要以独立思考为主,当遇到困难时学会求助交流,教师也要给学生思考交流的时间,让学生经历得出结论的过程,培养发现问题解决问题的能力。

  在整个学习过程中,通过对学生参与自主探究的程度、合作交流的意识以及独立思考的习惯,发现问题的能力进行评价,并对学生的想法或结论给予鼓励评价。

完全平方公式 篇10

  完全平方公式

  一、 内容简介

  本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。

  关键信息:

  1、以教材作为出发点,依据《数学课程标准》,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有啥关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、办法、态度特别是创新精神和实践能力等方面的发展。

  2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和办法。

  二、学习者分析:

  1、在学习本课之前应具备的基本知识和技能:

  ①同类项的定义。

  ②合并同类项法则

  ③多项式乘以多项式法则。

  2、学习者对即将学习的内容已经具备的水平:

  在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用办法。

  三、 教学/学习目标及其对应的课程标准:

  (一)教学目标:

  1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。

  2、会推导完全平方公式,并能运用公式进行简单的计算。

  (二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理

  数、实数、代数式、防城、不等式、函数;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、防城、不等式、函数等进行描述。

  (四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同

  角度寻求解决问题的办法,并能有效地解决问题,尝试评价不同办法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。

  (五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难

  和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。

  四、 教育理念和教学方式:

  1、教师是学生学习的组织者、促进者、合作者:学生是学习的主人,在教师指导下积极的、富有个性的学习,用自己的身体去亲自经历,用自己的心灵去亲自感悟。

  教学是师生交往、积极互动、共同发展的过程。当学生迷路的时

  候,教师不轻易告诉方向,而是引导他怎么样去辨明方向;当学生登山畏惧了的时候,教师不是拖着他走,而是唤起他内在的精神动力,鼓励他不断向上攀登。

  2、采用“问题情景—探究交流—得出结论—强化训练”的模式

  展开教学。

  3、教学评价方式:

  (1) 通过课堂观察,关注学生在观察、总结、训练等活动中的主

  动参与程度与合作交流意识,及时给与鼓励、强化、指导和矫正。

  (2) 通过判断和举例,给学生更多机会,在自然放松的状态下,

  揭示思维过程和反馈知识与技能的掌握情况,使老师可以及时诊断学情,调查教学。

  (3) 通过课后访谈和作业分析,及时查漏补缺,确保达到预期的

  教学效果。

  五、 教学媒体 :多媒体 六、 教学和活动过程:

  教学过程设计如下:

  〈一〉、提出问题

  [引入] 同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗?

  (2m+3n)2=_______________,(-2m-3n)2=______________,

  (2m-3n)2=_______________,(-2m+3n)2=_______________。

  〈二〉、分析问题

  1、[学生回答] 分组交流、讨论

  (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2,

  (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。

  (1)原式的特点。

  (2)结果的项数特点。

  (3)三项系数的特点(特别是符号的特点)。

  (4)三项与原多项式中两个单项式的关系。

  2、[学生回答] 总结完全平方公式的语言描述:

  两数和的平方,等于它们平方的和,加上它们乘积的两倍;

  两数差的平方,等于它们平方的和,减去它们乘积的两倍。

  3、[学生回答] 完全平方公式的数学表达式:

  (a+b)2=a2+2ab+b2;

  (a-b)2=a2-2ab+b2.

  〈三〉、运用公式,解决问题

  1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性)

  (m+n)2=____________, (m-n)2=_______________,

  (-m+n)2=____________, (-m-n)2=______________,

  (a+3)2=______________, (-c+5)2=______________,

  (-7-a)2=______________, (0.5-a)2=______________.

  2、判断:

  ( )① (a-2b)2= a2-2ab+b2

  ( )② (2m+n)2= 2m2+4mn+n2

  ( )③ (-n-3m)2= n2-6mn+9m2

  ( )④ (5a+0.2b)2= 25a2+5ab+0.4b2

  ( )⑤ (5a-0.2b)2= 5a2-5ab+0.04b2

  ( )⑥ (-a-2b)2=(a+2b)2

  ( )⑦ (2a-4b)2=(4a-2b)2

  ( )⑧ (-5m+n)2=(-n+5m)2

  3、小试牛刀

  ① (x+y)2 =______________;② (-y-x)2 =_______________;

  ③ (2x+3)2 =_____________;④ (3a-2)2 =_______________;

  ⑤ (2x+3y)2 =____________;⑥ (4x-5y)2 =______________;

  ⑦ (0.5m+n)2 =___________;⑧ (a-0.6b)2 =_____________.

  〈四〉、[学生小结]

  你认为完全平方公式在应用过程中,需要注意那些问题?

  (1) 公式右边共有3项。

  (2) 两个平方项符号永远为正。

  (3)中间项的符号由等号左边的两项符号是否相同决定。

  (4)中间项是等号左边两项乘积的2倍。

  〈五〉、冒险岛:

  (1)(-3a+2b)2=________________________________

  (2)(-7-2m) 2 =__________________________________

  (3)(-0.5m+2n) 2=_______________________________

  (4)(3/5a-1/2b) 2=________________________________

  (5)(mn+3) 2=__________________________________

  (6)(a2b-0.2) 2=_________________________________

  (7)(2xy2-3x2y) 2=_______________________________

  (8)(2n3-3m3) 2=________________________________

  〈六〉、学生自我评价

  [小结] 通过本节课的学习,你有啥收获和感悟?

  本节课,我们自己通过计算、分析结果,总结出了完全平方公式。在知识探索的过程中,同学们积极思考,大胆探索,团结协作共同取得了进步。

  〈七〉[作业] P34 随堂练习 P36 习题

  七、课后反思

  本节课虽然算不上课本中的难点,但在整式一章中是个重点。它是多项式乘法特殊形式下的一种简便运算。学生需要熟练掌握公式两种形式的使用办法,以提高运算速度。授课过程中,应注重让学生总结公式的等号两边的特点,让学生用语言表达公式的内容,让学生说明运用公式过程中容易出现的问题和特别注意的细节。然后再通过逐层深入的练习,巩固完全平方公式两种形式的应用。为完全平方公式第二节课的实际应用和提高应用做好充分的准

完全平方公式 篇11

  教学建议

  一、知识结构

  二、重点、难点分析

  本节教学的重点是完全平方公式的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).完全平方公式是进行代数运算与变形的重要的知识基础。

  1.两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.即:

  这两个公式是根据乘方的意义与多项式的乘法法则得到的.

  这两个公式的结构特征是:左边是两个相同的二项式相乘,右边是三项式,是左边二中两项的平方和,加上(这两项相加时)或减去(这两项相减时)这两项乘积的2倍;公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等代数式.

  2.只要符合这一公式的结构特征,就可以运用这一公式.

  在运用公式时,有时需要进行适当的变形,比如 可先变形为 或 或者 ,再进行计算.

  在运用公式时,防止发生 这样错误.

  3.运用完全平方公式计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项” 中的2丢掉.

  (3)计算时,要先观察题目特点是否符合公式的条件,若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算,若不能变为符合公式条件的形式,则应运用乘法法则进行计算.

  4. 与 都叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式.

  三、教法建议

  1.在公式的运用上,与平方差公式的运用一样,应着重让学生掌握公式的结构特征和字母表示数的广泛意义,教科书把公式中的字母同具体题目中的数或式子,用“ ”连结起来,逐项比较、对照,步骤写得完整,便于学生理解怎样正确地使用完全平方公式进行计算.

  2.正确地使用公式的关键是确定是否符合使用公式的条件.重要的是确定两数,然后再看是否两数的和(或差),最后按照公式写出两数和(或差)的平方的结果.

  3.怎样使学生记牢公式呢?我们注意了以下两点.

  (1)既讲“法”,也讲“理”

  在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式、法则道理的基础上进行记忆.我们引导学生借助面积图形对完全平方公式做直观说明,也是对说理的重视.在“明白道理”这个前提下的记忆,即使学生将来发生错误也易于纠正.

  (2)讲联系、讲对比、讲特点

  对于类似的内容学生容易混淆,例如在本节出现的(a+b)2=a2+b2的错误,其原因是把完全平方公式和“旧”知识(ab)2=a2b2及分配律弄混,排除新旧知识间相互干扰的一种作法是向学生指明新知识的特点.所以讲“理”是要讲联系、讲对比、讲特点.

  教学设计示例

  一、教学目标

  1.理解完全平方公式的意义,准确掌握两个公式的结构特征.

  2.熟练运用公式进行计算.

  3.通过推导公式训练学生发现问题、探索规律的能力.

  4.培养学生用数形结合的办法解决问题的数学思想.

  5.渗透数学公式的结构美、和谐美.

  二、学法引导

  1.教学办法:尝试指导法、讲练结合法.

  2.学生学法:本节学习了乘法公式中的完全平方,一个是两数和的平方,另一个是两数差的平方,两者仅一个“符号”不同.相乘的结果是两数的平方和,加上(或减去)两数的积的2倍,两者也仅差一个“符号”不同,运用完全平方公式计算时,要注意:

  (1)切勿把此公式与公式 混淆,而随意写成 .

  (2)切勿把“乘积项”2ab中的2丢掉.

  (3)计算时,要先观察题目是否符合公式的条件.若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算.

  三、重点•难点及解决办法

  (一)重点

  掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算.

  (二)难点

  综合运用平方差公式与完全平方公式进行计算.

  (三)解决办法

  强化对公式结构特征的深入理解,在反复练习中掌握公式的应用.

  四、课时安排

  一课时.

  五、教具学具准备

  投影仪或电脑、自制胶片.

  六、师生互动活动设计

  1.让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.

  2.引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.

  3.举例分析怎样正确使用完全平方公式,师生共练完成本课时重点内容.

  4.适时练习并总结,从实践到理论再回到实践,以指导今后的解题.

  七、教学步骤

  (一)明确目标

  本节课重点学习完全平方公式及其应用.

  (二)整体感知

  掌握好完全平方公式的关键在于能正确识别符合公式特征的结构,同时还要注意公式中2ab中2的问题,在解题过程中应多观察、多思考、多揣摩规律.

  (三)教学过程

  1.计算导入;求得公式

  (1)叙述平方差公式的内容并用字母表示;

  (2)用简便办法计算

  ①103×97

  ②103 × 103

  (3)请同学们自编一个符合平方差公式结构的计算题,并算出结果.

  学生活动:编题、解题,然后两至三个学生说出题目和结果.

  要想用好公式,关键在于辨认题目的结构特征,正确使用公式,这节课我们继续学习“乘

  法公式”.

  引例:计算 ,

  学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.

  或合并为:

  教师引导学生用文字概括公式.

  办法:由学生概括,教师给予肯定、否定或更正,同时板书.

  两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.

  【教法说明】

  ①复习平方差公式,主要是引起回忆,巩固公式;编题在于提高兴趣.

  ②有了平方差公式的推导过程,学生基本建立起了一些特殊多项式乘法的认识办法,因此推导完全平方公式可以由计算直接得出.

  2.结合图形,理解公式

  根据图形完成下列问题:

  如图:A、B两图均为正方形,

  (1)图A中正方形的面积为____________,(用代数式表示)

  图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。

  (2)图B中,正方形的面积为____________________,

  Ⅲ的面积为______________,

  Ⅰ、Ⅱ、Ⅳ的面积和为____________,

  用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。

  分别得出结论:

  学生活动:在教师引导下回答问题.

  【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想。

  3.探索新知,讲授新课

  (1)引例:计算

  教师讲解:在 中,把x看成a,把2y看成b,在 中把2x看成a,把3y看成b,则 、 ,就可用完全平方公式来计算,即

  【教法说明】 引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.

  (2)例1 运用完全平方公式计算:

  ①   ②   ③

  学生活动:学生独立在练习本上尝试解题,3个学生板演.

  【教法说明】 让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例呈中(3)的计算,可对照公式直接计算,也可变形成,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.

  4.尝试反馈,巩固知识

  练习一

  运用完全平方公式计算:

  (1)   (2)   (3)

  (4)   (5)   (6)

  (7)   (8)   (9)

  (l0)

  学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.

  5.变式训练,培养能力

  练习二

  运用完全平方公式计算:

  (l)  (2)  (3)  (4)

  学生活动:学生分组讨论,选代表解答.

  练习三

  (1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的请指出错在哪里.

  甲的计算过程是:原式

  乙的计算过程是:原式

  丙的计算过程是:原式

  丁的计算过程是:原式

  (2)想一想, 与 相等吗?为啥?

  与 相等吗?为啥?

  学生活动:观察、思考后,回答问题.

  【教法说明】 练习二是一组数字计算题,使学生体会到公式的用途,也可以激发学生学习兴趣,调动学生的学习积极性,同时也起到加深理解公式的作用.练习三第(l)题实际是课本例4,此题是与平方差公式的综合运用,难度较大.通过给出解题步骤,让学生进行判断,使难度降低,学生易于理解,教师要注意引导学生分析这类题的结构特征,掌握解题办法.通过完成第(2)题使学生进一步理解 与 之间的相等关系,同时加深理解代数中“a”具有的广泛意义.

  练习四

  运用乘法公式计算:

  (l)   (2)

  (3)  (4)

  学生活动:采取比赛的方式把学生分成四组,每组完成一题,看哪一组完成得快而且准确,每组各派一个学生板演本组题目.

  【教法说明】 这样做的目的是训练学生的快速反应能力及综合运用知识的能力,同时也激发学生的学习兴趣,活跃课堂气氛.

  (四)总结、扩展

  这节课我们学习了乘法公式中的完全平方公式.

  引导学生举例说明公式的结构特征,公式中字母含义和运用公式时应该注意的问题.

  八、布置作业

  P133 1,2.(3)(4).

  参考答案

  略.

完全平方公式 篇12

  一、教学目标 :

  经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2,并初步运用;难点是完全平方公式的运用。

  二、教学过程 :

  1.检查学生的“预习知识树”,导入  课题:

  师:前面学习了平方差公式,同学们对平方差公式的结构特点、运用以及学习公式的意义有了初步的认识。今天,我们继续学习、研究另一种“乘法公式”——完全平方公式。请拿出你的“预习知识树”,小组内互查并交流,在预习中有疑问的同学请询问。

  (活动:老师巡视、检查学生的预习情况,并解答学生在预习中存在的问题)生:(互查、讨论“预习知识树”,有问题的询问问题。)师:(老师点评学生预习情况,并出示老师做的“知识树”,引出课题:完全平方公式。)说明:把预习提到课前,利用“知识树”引导学生自学,学生可以独立思考、自主学习,也可合作交流、讨论研究,这样预习会更充分,听讲时就能有准备、有选择;一上课,老师就检查“预习知识树”,了解学生新课学习情况,适当点拨,在课堂上留出更多的时间大量拓展、提高,发展学生的能力。

  2.自学检测,制造通用工具:师:下面进行自学检测.计算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。

  (活动:投影显示练习题。)生:(四人到黑板上板演,答错了,由学生纠正,老师再点评。)师:观察练习,公式中的a、b可代表啥?

  生:可以表示一个数,也可以表示一个单项式、多项式。

  说明:点评时,老师反复引导学生分清题目中哪部分相当于公式中的a,哪部分相当于公式中的b,就是让学生明确“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的变化规律,即制造通用工具。在前面学习平方差公式时,学生应该认识到这个道理,在这里再次强化。

  师:说得非常好,明确“公式中的a、b可以表示一个数,也可以表示一个单项式、多项式”的变化规律,就能正确运用公式解题了。显然,刚做的练习题是由公式变化来的,若是变下去,能变多少道题?

  生:无数道。师:最终是几道题?生:一道。说明:这就是老师的“暗线”语言,引导学生明白从公式出发,反映在a、b上只是取值不同,可以演变出无数道题,是“解压”的过程,最终还是利用公式解题,所有的题目只有“一道”,只是形式不同,这也是“压缩”的过程,把握了变化规律才能更好地解题。

  师:你会变了吗?请各小组编题。(活动:四人小组先在组内讨论、交流,再推选完成最快的两个小组出示题目,其他小组同学练习。)说明:引导学生现场出题,一是激发学生兴趣、活跃气氛,二是验证变化规律。

  师:下面思考,怎样计算:(a+b+c)2生1:可根据多项式乘以多项式来计算,就是把(a+b+c)2看做(a+b+c)(a+b+c)。

  师:不错。还有其他办法吗?生2:也可以把其中的(a+b)两项看成一项,变成[(a+b)+c]2的形式,就能直接运用完全平方公式了。

  师:说得非常好。两种办法都可以,但哪种更简单呢?请你任选一种,完成练习。

  生:(紧张地做题,同时找两个学生到黑板上板演。)师:这道题若是变为(a+b+c+d)2,你会做吗?

  生:(齐答)会。师:怎么办?生1:把其中(a+b)看做一项,(c+d)看做一项,还是利用完全平方公式解题。

  生2:还有其他分组方式,如把(a+c)看做一项,(b+d)看做一项,也能直接运用公式解题。

  师:办法一样吗?生:一样的。师:还能变下去吗?这样可以变出多少道题?

  生:无数道。师:最终是几道题?生:(齐答)一道题。师:现在,老师相信每个学生都会解这样的题了。课下,请同学们思考:如果把(a+b)2的指数变化一下,也可以变出多少道题,你能计算出来吗?

  (活动:投影显示一组题目,如(a+b)3、(a+b)4……)说明:这就是老师进一步利用这个例子论证“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的变化规律。

  3.通过大量的习题验证通用工具,学生并自造通用工具。

  师:通过前面的检测,看出同学们已经基本掌握了完全平方公式。下面进入达标检测。

  (活动:投影显示达标检测题)1.填空:

  ①(2x+3y)2=______;②(14a-1)2=116a2-____+1;③当x=5,y=2,则(x+y)(x-y)-(x-y)2=_________。

  2.计算:

  ①(-2m-n)2;②(2-3a2)(3a2-2);③(-cd+12)2;④(n+3)2-n23.计算:(x+2y+3)(x+2y-3)生:(积极

  、积极地在作业 本上完成上面练习题。)师:(巡视,批阅完成快的学生的作业 ,最后集体点评,只讲不会的。)说明:第2①

  题,可先变形为[-(2m+n)]2,再按(a+b)2的公式展开,也可直接理解成-2m与n的差,按(a-b)2计算;第2②题将(2-3a2)变形为-(3a2-2),原式可转化为-(3a2-2)2,直接运用公式计算;第2④题把(n+3)看做a

  、n看做b,逆用平方差公式也是一种解法,同时训练学生的逆向思维;第3题是下节课训练内容,在这里可以提前,引导学生通过变形,得出(x+2y+3)(x+2y-3)=[(x+2y)+3]·[(x+2y)-3]=(x+2y)2-32=x2+4xy+4y2-9,这里还是把(x+2y)看做a、3看做b,进一步验证了“通用工具”,即“解决某一类问题的一种思维方式或办法”。拓展提高还是在“变”上下功夫,要求学生能较熟练掌握,逐步达到脑算的层次,水到渠成,能力自然提高,学生就会自造“通用工具”了。

  4.嫁接“知识树”,推荐作业 。师:本节课你有啥收获?还有啥问题吗?

  (活动:再次投影本节课“知识树”。)生:这节课我们学习、研究了完全平方公式(a±b)2=a2±2ab+b2,知道了公式中a、b,可以是单项式也可以是多项式,能运用公式解题了,能力上也有新的提高.师:课下完成本节课的作业 .[投影显示]思考题:计算(a+b+c)2、(a+b+c+d)2的结果,观察有啥规律,感兴趣的同学还可计算(a+b)3、(a+b)4的结果,你也能发现啥规律.预习指导:①课本第38-39页内容,重点研究例3两个题目的解题办法,能尝试独自解答课后随堂练习或习题,②设计下节课“知识树”,优化本单元“知识树”。说明:本环节是将本节课“知识树”

  移植到乘法公式的单元“知识树”上,整体构建知识,同时更强化化了学生的“能力树”。作业 是推荐性的作业 ,达标检测就是“堂堂清”,学生课下只须做好预习作业 就行了,这样会有更多自由安排的时间,发展个性。

完全平方公式 篇13

  完全平方公式(教案)        贾村中学       聂盼山

  一、教学目标 

  (1)                            (1)            知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。

  (2)                            (2)            过程与办法目标;学生探究完全平方公式,体会数形结合。

  二、教学重点;公式结构及运用。

  三、教学难点 ;公式中字母AB的含义理解与公式正确运用。

  四、教具;自制长方形、正方形卡片

  五、教学过程 ;

  教师活动

  学生活动

  1、            1、        创设情景,提出问题,引入课题

  (1)                (1)          想一想

  一位老人很喜欢小孩,每当小孩到他家做客时,老人都拿出糖招待他们,来了几个小孩老人就会每个小孩几块糖。

  (1)                (1)          第一天,a个男孩去看老人,老人共给他们几块糖?

  (2)                (2)          第二天,个女小孩去看望老人,老人共给他们多少块糖?

  (3)                (3)          第三天,(   )个小孩一起去看望老人,老人共给他们多少块糖?

  (4)                (4)          第三天比前二天的小孩得到糖总数哪个多?多多少?为啥?(分组讨论)

  1、  1、  学生四人一组讨论。

  填空:

  (1)第一天给小孩    块糖。

  (2)第二天给小孩    块糖。

  (3)第三天给小孩   块糖。

  男小孩第三天多得    块糖

  女孩第三天多得   块糖。

  教师活动

  学生活动

  (2)                (2)          做一做、请同学拼图

  a

  教师巡视指导学生拼图

  2、            2、        教师提问:

  (1)、大正方形边长?(2)每一块卡片的面积是多少?(3)用不同形式表示正方形总面积,比较发现啥?

  3、            3、        想一想

  (1)(a +b )用多项式乘法法则说明

  (2)( a -b )

  4、请同学们自己叙述上面的等式

  5、说一说,a b能表示啥?

  (□+○) □+2□○+○

  6、算一算

  (1)(2X-3)(2)(4X+5Y)

  请同学们分清a b

  7、练一练

  (1)(2X-3Y) (2)(2XY-3X)

  8、试一试(a+b+c)

  作业 :P135 1、2

  学生2人一组拼图交流

  2、学生观察思考

  (1)            (1)     大正方形边长?

  (2)            (2)     四块卡片的面积分别是

  (3)            (3)     大正方形的总面积是多少?

  3、(1)学生运用多项式乘法法则推导

  (a+b)=a+2ab+b说出每一步运算理由

  (2)学生自己探究交流

  4、学生用语言叙述公式

  5、师生共同a、b对应项 教师书写

  6、学生独立完成练一练展示结果

  7、学生四人一组讨论交流

  8、有兴趣的同学可以探

  完全平方公式(教案)        贾村中学       聂盼山

  一、教学目标 

  (1)                            (1)            知识与技能;学生通过推导完全平方公式,掌握公式结构,能计算。

  (2)                            (2)            过程与办法目标;学生探究完全平方公式,体会数形结合。

  二、教学重点;公式结构及运用。

  三、教学难点 ;公式中字母AB的含义理解与公式正确运用。

  四、教具;自制长方形、正方形卡片

  五、教学过程 ;

  教师活动

  学生活动

  1、            1、        创设情景,提出问题,引入课题

  (1)                (1)          想一想

  一位老人很喜欢小孩,每当小孩到他家做客时,老人都拿出糖招待他们,来了几个小孩老人就会每个小孩几块糖。

  (1)                (1)          第一天,a个男孩去看老人,老人共给他们几块糖?

  (2)                (2)          第二天,个女小孩去看望老人,老人共给他们多少块糖?

  (3)                (3)          第三天,(   )个小孩一起去看望老人,老人共给他们多少块糖?

  (4)                (4)          第三天比前二天的小孩得到糖总数哪个多?多多少?为啥?(分组讨论)

  1、  1、  学生四人一组讨论。

  填空:

  (1)第一天给小孩    块糖。

  (2)第二天给小孩    块糖。

  (3)第三天给小孩   块糖。

  男小孩第三天多得    块糖

  女孩第三天多得   块糖。

  教师活动

  学生活动

  (2)                (2)          做一做、请同学拼图

  a

  教师巡视指导学生拼图

  2、            2、        教师提问:

  (1)、大正方形边长?(2)每一块卡片的面积是多少?(3)用不同形式表示正方形总面积,比较发现啥?

  3、            3、        想一想

  (1)(a +b )用多项式乘法法则说明

  (2)( a -b )

  4、请同学们自己叙述上面的等式

  5、说一说,a b能表示啥?

  (□+○) □+2□○+○

  6、算一算

  (1)(2X-3)(2)(4X+5Y)

  请同学们分清a b

  7、练一练

  (1)(2X-3Y) (2)(2XY-3X)

  8、试一试(a+b+c)

  作业 :P135 1、2

  学生2人一组拼图交流

  2、学生观察思考

  (1)            (1)     大正方形边长?

  (2)            (2)     四块卡片的面积分别是

  (3)            (3)     大正方形的总面积是多少?

  3、(1)学生运用多项式乘法法则推导

  (a+b)=a+2ab+b说出每一步运算理由

  (2)学生自己探究交流

  4、学生用语言叙述公式

  5、师生共同a、b对应项 教师书写

  6、学生独立完成练一练展示结果

  7、学生四人一组讨论交流

  8、有兴趣的同学可以探

推荐站内搜索:江苏省成人高考网、吉林省自学考试成绩查询、作文童年趣事、六级准考证查询、竞选学生会演讲稿、高中周记600字、江苏省自学考试成绩查询、专升本分数线、ntce教师资格证报名入口官网、清明节是几月几日、

完全平方公式(精选13篇)
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:完全平方公式(精选13篇)
文章链接:https://678999.cn/99461.html
本站资源仅供个人学习交流,请于下载后24小时内删除,不允许用于商业用途,否则法律问题自行承担。

一路高升范文网

提供各类范文...

联系我们联系我们

登录

找回密码

注册