圆的标准方程教案圆的标准方程教案圆的标准方程教案

欢迎光临
我们一直在努力

圆的标准方程教案

1.教学目标 (1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程; 2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程. (2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力; 2.使学生加深对数形结合思想和待定系数法的理解; 3.增强学生用数学的意识. (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣. 2.教学重点.难点 (1)教学重点:圆的标准方程的求法及其应用. (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰 当的坐标系解决与圆有关的实际问题. 3.教学过程 (一)创设情境(启迪思维) 问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道? [引导] 画图建系 [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习) 解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0) 将x=2.7代入,得 . 即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。 (二)深入探究(获得新 知) 问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程? 答:x2 y2=r2 2.如果圆心在 ,半径为 时又如何呢? [学生活动] 探究圆的方程。 [教师预设] 方法一:坐标法 如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r} 由两点间的距离公式,点m适合的条件可表示为 ① 把①式两边平方,得(x―a)2 (y―b)2=r2 方法二:图形变换法 方法三:向量平移法 (三)应用举例(巩固提高) i.直接应用(内化新知) 问题三:1.写出下列各圆的方程(课本p77练习1) (1)圆心在原点,半径为3; (2)圆心在 ,半径为 ; (3)经过点 ,圆心在点 . 2.根据圆的方程写出圆心和半径 (1) ; (2) . ii.灵活应用(提升能力) 问题四:1.求以 为圆心,并且和直线 相切的圆的方程. [教师引导]由问题三知:圆心与半径可以确定圆. 2.已知圆的方程为 ,求过圆上一点 的切线方程. [学生活动]探究方法 [教师预设] 方法一:待定系数法(利用几何关系求斜率-垂直) 方法二:待定系数法(利用代数关系求斜率-联立方程) 方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示] 方法四:轨迹法(利用向量垂直列关系式) 3.你能归纳出具有一般性的结论吗? 已知圆的方程是 ,经过圆上一点 的切线的方程是: . iii.实际应用(回归自然) 问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m). [多媒体课件演示创设实际问题情境] (四)反馈训练(形成方法) 问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程. 2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程. 3.求圆x2 y2=13过点(-2,3)的切线方程. 4.已知圆的方程为 ,求过点 的切线方程. (五)小结反思(拓展引申) 1.课堂小结: (1)圆心为c(a,b),半径为r 的圆的标准方程为: 当圆心在原点时,圆的标准方程为: (2) 求圆的方程的方法:①找出圆心和半径;②待定系数法 (3) 已知圆的方程是 ,经过圆上一点 的切线的方程是: (4) 求解应用问题的一般方法 2.分层作业:(a)巩固型作业:课本p81-82:(习题7.6)1.2.4 (b)思维拓展型作业: 试推导过圆 上一点 的切线方程. 3.激发新疑: 问题七:1.把圆的标准方程展开后是什么形式? 2.方程: 的曲线是什么图形? 教学设计说明 圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。.首先,在已有圆的定义和求曲线方程的一般步骤的基础上,用实际问题引导学生探究获得圆的标准方程,然后,利用圆的标准方程由浅入深的解决问题,并通过圆的方程在实际问题中的应用,增强学生用数学的意识。另外,为了培养学生的理性思维,我分别在引例和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成. 本节课的设计了五个环节,以问题为纽带,以探究活动为载体,使学生在问题的指引下、教师的指导下把探究活动层层展开、步步深入,充分体现以教师为主导,以学生为主体的指导思想。应用启发式的教学方法把学生学习知识的过程转变为学生观察问题、发现问题、分析问题、解决问题的过程,在解决问题的同时锻炼了思维.提高了能力、培养了

文章来源自3edu教育网兴趣、增强了信心

推荐站内搜索:2021下半年教师资格证答案、吉林自学考试成绩查询、四川大学考研成绩查询、全国成人高考网上报名、《一件令我感动的事》、考试试题网、成人高考试题、成人高考报名、大队委竞选演讲稿、二级建造师报名时间2022年官网、

圆的标准方程教案
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:圆的标准方程教案
文章链接:https://678999.cn/143241.html
本站资源仅供个人学习交流,请于下载后24小时内删除,不允许用于商业用途,否则法律问题自行承担。

一路高升范文网

提供各类范文...

联系我们联系我们

登录

找回密码

注册