《方程的意义》教学设计(通用13篇)
《方程的意义》教学设计 篇1
教学内容:苏教版教科书第1~2页的内容。
教学目的:
⑴在具体的情景中,让学生理解等式、方程的含义,体会等式和方程的关系,能根据情景图正确地列出方程。
⑵在观察、分析、抽象、概括和交流的过程中,让学生经历将现实问题抽象成式和方程的过程,积累将现实问题数学化的经验,感受方程的思想办法及价值,发展抽象能力和符号感。
⑶学生在数学活动的过程中,养成独立思考、积极与他人合作交流等习惯,获得成功的体验,培养对数学的学习兴趣。
教学流程:
一、情景引入,初步展开新课。
⑴出示“天平”情景图,了解学情。
让学生说说,你知道了啥?
天平;两边是一样重的;指针在中间表示就表示相等等等。
⑵用等式表示天平两边物体的质量关系。
先写出等式;交流等式:50+50=100,交流这样列式的思考;揭示概念,象这样表示两边相等的式子就是等式。
二、继续出示情景图,深入展开新课。
⑴出示情景图,明确要求。
用式子表示天平两边物体的质量关系。
⑵独立思考,试写式子。
学生在书上独立填写。
⑶学情反馈,班级交流。
让学生自行上黑板写不同的式子。
可能会出现下面这些式子:x+50>100,x+50≠100, x+50=100+50,x+50<200,x+50≠200,x+x=200,2x=200等
甄别确认正确答案。
⑷尝试分类,理解方程的意义。
明确要求——分类;为类别起名,等式,不等式;独立分类,等式:x+x=200,2x=200 ,x+50=100+50,50+50=100,不等式:x+50>100,x+50≠100,x+50<200,x+50≠200。
再分类,不等式感悟“>”和“<”比“≠”更准确;等式分类:等式中有一部分叫等式(含有未知数)。
⑸体会等式和方程的关系。
用符号表示等式和方程的关系,比如集合图等;用形象的情景表示等式和方程的关系,比如部分和总数等。
三、独立练习,进一步内化新知。
⑴完成练一练1。
确定用不同的符号表示方程和等式,确定寻找等式和方程的思路和办法;交流矫正。
⑵下面哪些是等式,哪些是方程?用线连一连。
9-x=3 20+30=50
80÷4=20 等式 x+17=38
x-15 方程 36+ x<40
7y=63 54÷x=9
⑶完成第2页试一试和看图列方程。
先独立列方程,再在小组里交流列式的思考。
⑷完成练习一1~3。
重点交流第2题。
《方程的意义》教学设计 篇2
一,教学内容:
"义务教育课程标准实验教科书数学"五年级上册p53~54方程的意义
二,教材分析
方程的意义对学生来说是一节全新的概念课,让学生用一种全新的思维方式去思考问题,拓展了学生思维的虚拟主机,是数学思想办法认识上的一次飞跃.方程的意义是学生学了四年的算术知识,及初步接触了一点代数知识(如用字母表示数)的基础上进行学习的,同时也是学习"解方程"的基础,是渗透用方程表示数量关系式的一个突破口,是今后用方程解决实际问题的一块奠基石.
三,教学目标
根据新课标的要求,结合教材的特点和学生原有的相关认识基础及生活经验确定本节课的教学目标:
1,使学生在具体的情境中理解方程的含义,体会等式与方程的关系,并会用方程表示简单情境中的等量关系.
2,经历从生活情境到方程模型的构建过程,使学生在观察,描述,分类,抽象,交流,应用的过程中,感受方程的思想办法及价值,发展抽象思维能力和增强符号感.
3, 让学生在学习中体验到数学源于生活,充分享受学习数学的乐趣,进一步感受数学与生活之间的密切联系.
四,教学重点,难点:
教学重点:理解方程的含义,以及在具体的情境中建立方程的模型.
教学难点:正确寻找等量关系列方程.
五,教学设想
概念教学本来就比较抽象,而且方程思想作为一种全新的思维方式也有别于学生一贯的算术思路,因此在教学时要重视学生在理解的基础上感知方程的意义,充分利用学生原有的认识基础,关注由具体实例到一般意义的抽象概括过程,尽量直观化,生活化,发挥具体实例对于抽象概括的支撑作用,同时也要及时引导学生超脱实例的具体性,实现必要的抽象概括过程.经历从具体-----抽象------应用的认知过程.
六,教学准备:课件,天平,实物若干等
七,教学过程:
课前准备:利用学具(简易天平)感受天平平衡的原理.
教学过程
学生活动
设计意图
一,创设情景,建立表象
1.认识天平.
2.同学们通过课前的实际操作你发现要使天平平衡的条件是啥
(天平两边所放物体质量相等)
3.用式子表示所观察到的情景:
情景一:导入等式
(1)天平左边放一个300克和一个150克的橙子,天平的右边放一个450克的菠萝
300+150=450
(2)天平左边放四盒250克的牛奶,右边放一盒1000克的牛奶
250+250+250+250=1000
或250×4=1000
情景二:从不平衡到平衡引出不等式与含有未知数的等式
(1)
在杯子里面加入一些水,天平会有啥变化
要使天平平衡,可以怎么做
情景三:看图列等式
(1)
x+y=250
(2)
536+a=600
直观认识天平
回忆课前操作实况理解平衡原理
观察情景图,先用语言描述天平所处的状态,再用式子表示
先观察天平从不平衡到平衡这一组动态的操作,再用语言进行描述进而用数学符号进行概括从中感悟不等式与等式的区别,同时进一步加深对等式的理解
观察课件显示的情景图,小组合作交流用等式表示所看到的天平所处的状态
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.学生通过课前"玩学具"已建立天平平衡的条件是左右两边所放物体的质量相等的印象,通过天平的平衡原理引入等式是为下一步认识方程作好必要的铺垫,同时通过天平的直观性也进一步让学生体会等式的含义.
通过学生的观察以及对情景的描述并用等式表示,直观具体,生动形象,能充分调动学生的学习积极性和强烈的求知欲望同时也培养学生的语言表达能力及符号感(从具体情境中抽象出数量关系并用符号来表示,理解符号所代表的数量关系).
具体的操作比课件演示更具吸引力,而且让学生感觉更真切,注意力更集中.但教师操作过多会显得烦琐且浪费时间,因此要适时结合多媒体的优势,故情境三的出示我选用了课件显示.而且情境三也是为了下一步分类时使学生不会只片面地看问题,如果只有100+x=250一个方程会误导学生含有一个未知数的等式叫做方程,归纳不应建立在单一的例子中,故设计了情境三,引入多几个方程的式子让学生分类.
二,形成概念,探求新知
1.第一次分类:把上面的式子按等式与否可分为哪两类
等式 不等式
300+150=450 100+x>200
250×4=1000 100+x100
猜一猜,下面的式子是不是方程
□+x>52 x÷□
x÷□=78 5×□=24
看图列方程
根据下面的信息找出等量关系列出方程
我们班共有49人,男生27人,女生a人
关系式:男生人数+女生人数=全班人数
方程:27+a=49
小宇每月有30元零花钱,已经花了x元,还剩16元
关系式:已花的钱+还剩的钱=每月零花钱
方程:x+16=30
小红买了b支铅笔,每支0.5元,共付7.5元
关系式:每支铅笔的价钱×支数=共付钱数
方程:0.5×b=7.5
学生根据自己对方程的理解判断一些等式是否方程,并说出理由.
通过观察课件出示的式子及对方程的理解判断一些不完整式子是不是方程.
根据情景图中的等量关系列出方程,加深理解列方程的依据是要找出等量关系.
根据文字信息找出等量关系并用方程表示出来.
练习是学生巩固知识,形成技能的一种重要途径,通过练习加深理解,消化巩固所学的知识,并应用所学知识灵活解决实际问题.
争议是一种很好的激发学生思维火花的教学形式,通过猜一猜的活动,能引起学生强烈的争论,让学生在争议中巩固方程与等式的概念,同时也极大地调动了学生的学习积极性,把学生的注意力高度集中到课堂上.
上面根据情境图列等式时学生还没形成方程的概念,在形成方程的概念后再做这样的练习使学生从直观的情景中感受列方程的关键是找出等量关系,进一步深化对方程意义的理解.而且通过一系列的数学活动使学生认识到现实生活中蕴含着大量的数学信息,数学在现实 世界中有着广泛的应用;面对实际问题时,能积极尝试着从数学的角度运用所学知识和办法寻求解决问题的策略.
内容的呈现应用不同的表达方式,以满足多样化的学习需求.先从情景图入手列方程再过渡到在文字信息中找等量关系列方程使学生经历一个由易到难,由直观到抽象的过程,层层递进,形成牢固的知识基础,并为以后学习用方程解决实际问题打下坚实的基础.
四,全课总结,明确收获
通过这节课的学习,你有啥收获
回顾学习过程,总结学习办法.
对本节课的内容作一次整体回顾,可以让学生对本节课的新知识进行一次梳理,深化知识体系,领悟知识要点,体验探索新知识的喜悦,获得成功感.
五,拓展延伸,发展思维
1.在下面的信息中找到合适的等量关系列出方程,你还有别的发现吗
小明今年x岁,父亲今年36岁,爷爷今年z岁.
父亲对小明说:我们俩的年龄相差30岁,爷爷的年龄是你的12倍.
在综合的信息中找到相关联的两种量之间的关系列出方程
拓展练习给了学生一个发散思维训练的虚拟主机,特别能激起他们思维的火花,往往能产生意想不到的效果,而且在教学中要适当的给学生思维来一个"跳一跳"的机会,开发他们不限的潜能.
概念教学是一种理论教学,理论性,学术性较强,往往会显得枯燥无味,但同时它也是一种基础教学,是以后学习更深一层知识,解决更多实际问题的知识支撑,因此我们应该重视概念教学的开放性,自主性与概念形成的自然性.而且数学课程标准指出:数学教学,要紧密联系学生的生活环境,从学生的经验和已有知识出发,创设有助于学生自主学习,合作交流的情境,使学生通过观察,操作,归纳,类比,猜测,交流,反思等活动,获得基本的数学知识和技能,进一步发展思维能力,激发学生的学习兴趣,增强学生学好数学的信心.所以我在教学设计的过程中十分重视学生原有的知识基础,用直观手法向抽象过渡,用递进形式层层推进,让学生经历一个知识形成的过程,并尽可能让他们用语言表达描述出自己对学习过程中的理解,最后形成新的知识脉络.
板书设计:
方程的意义
(含有未知数的等式叫做方程)
等式 不等式
300+150=450 100+x>200
250×4=1000 100+x<300
100+x=250
x+y=250
536+a=600
不含有未知数
含有未知数
方程
《方程的意义》教学设计 篇3
教材分析:
方程是含有未知数的等式,因此我设计教学方程的概念是从等式引入的,教材采用连环画的形式,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克。然后在杯中倒入水,并设水重x克,让学生说出能用一个啥样的式子表示出来,让学生知道方程源于生活。通过引导学生观察一组图形的变化,逐步引出等式,进而由不等到相等,引出含有未知数的等式称为方程。
在此基础上,一方面让学生列举像方程这样的式子,并予以区别,强化方程的意义。另一方面通过三位小孩子写方程,让学生初步感知方程的多样性。
“做一做”让学生判断哪些是方程,使学生进一步巩固方程的意义。在这儿,一般只要求学生初步理解方程的意义,所以只要学生知道啥是方程,能判断就可,不必在概念上过分纠缠,更不必拓展太多,以免加重学生负担。
“你知道吗?”的阅读资料简要简介了有关方程的一些史料。让学生只需感知,不作记忆的要求。
学情分析:
五年级的学生对方程这块内容是第一次正式接触,虽然在这学期开始的作业本中有几次方程的题出现,但对学生来说还是比较陌生的,在他们头脑中还没有过方程这样的表象,所以授新课就要从学生原有的基础开始,从他们知道的东西,如跷跷板到天平,然后再过渡到方程。在教学过程中还要注意把握学生的接受能力,这节课只要学生能理解和判断,不能过分纠缠概念上问题和其他课外的知识,如果要学生了解太多会加重学生的负担,反而使学生因难而失去学习的兴趣。基础不太好、理解能力不太强的学生在学习过程中可能会遇到对新的内容不容易接受,特别是概念课,所以让学生课前预习会对这些学生有一定的帮助。在课堂上多让学生看形象的事物,进而理解概念,帮助学生更好的学习。
教学目标:1. 通过天平演示,使学生初步理解方程的意义;
2. 使学生能够判断一个式子是不是方程并能解决简单的实际问题;
3. 培养学生观察、描述、分类、抽象、概括、应用等能力。
重点难点: 判断一个式子是不是方程;初步理解方程的意义。
课前准备: 课件、天平、带有磁铁的卡纸、彩色记号笔。
教学过程: 修改意见
一、复习旧知,激趣导入
同学们,我们上节课学了用含有字母的式子表示一些数量关系,现在老师要考考你们,已知我们学校有408位同学,再加上所有老师,你能用一个式子来表示师生一共有多少人吗?(板书:218+ x)。学得真不错,今天我们要进一步来研究这些含有未知数的式子所隐藏着的数学奥秘,想知道吗?请你用饱满的姿态告诉老师!
二、创设情景,导入新课
1.同学们,你们去过公园了吗?玩过翘翘板了吗,如果你和父亲一起玩,会出现啥样的结果?(翘翘板摇晃不平衡)
师:怎么样才能保持两边平衡呢?(让母亲也加入)
小结;当两边重量差不多的时候,跷跷板基本保持平衡,就能很好的玩游戏了。
三、探究新知
1、师:在数学中与翘翘板原理一样的工具,你知道是啥吗?(生答:天平)
2、简介:(出示天平)这就是我们这节课要用到的称量工具——天平。天平是由天平秤和砝码组成的。砝码有不同,越大就越重。把要称量的物体放在左边的托盘,右边的托盘放上相应的砝码,当天平平衡、指针指在正中央,说明这个物体的重量就是砝码的重量。
2.课件出示第二幅图:一个天平左盘上放了一个玻璃杯,右盘上放了100 g重的砝码,正好平衡。
师:请看这幅图。
思考:看了这幅图你知道了啥?生答。
师:对,我们找到了这样一个等量关系,(卡片出示:1个空杯子=100g)
3. 课件出示第三幅图:一个天平左盘上放了一个加约150毫升水(红色)的玻璃杯,右盘上放了100 g重的砝码,天平左低右高。
师:如果我们在杯中加约150毫升的水呢?为了大家看得更清楚,老师在水中滴几滴红墨水。
问:这时发生了啥变化?(生能答:杯子里倒了水,水有重量,天平就不平衡了。)
问:如果水重x克,你能用一个式子表示天平两边的结果吗?
生回答后,课件、卡片出示:100+x>100
4.课件出示第四幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上加了100 g重的砝码,天平还是左低右高。
师:天平出现了倾斜,因为杯子和水的质量加起来比100克重,要使天平平衡,该怎么做?(增加砝码)对,要需要增加砝码的质量。
师:怎样?刚才左低右高,现在呢?(生能答:还要加砝码)那就在加100 g重的一个砝码。(课件演示:右盘上再放100 g重的砝码,天平出现左高右低。)
师:现在啥情况?(生答:左高右低)这种情况你能用式子来表示吗?可以同桌讨论。
学生回答后课件、卡片出示: 100+x<300
问:观察列出的两个式子,有啥共同的地方?
这个问题可能稍有难度,教师可以引导:当天平两边不平衡,一边比一边重时,要表示两边的关系,我们就可以用这样的不等式表示。(板书:不等式)
问:能再举几个这样的不等式吗?
(学生列出不等式,教师选择两个写在卡片上贴于黑板。)
5. 课件出示第五幅图:一个天平左盘上放了一个加了水的玻璃杯,右盘上放了250 g重的砝码,天平平衡。
师:下面老师把其中一个100 g重的砝码换成50 g重的砝码。你再来观察一下。
(学生看到都说:平衡了)
问:谁来表示这个式子?
学生回答后课件、卡片出示:100+x=250
问:为啥用“=”呢?(平衡就是相等了)
问:哦,那这个式子与刚才两个不等式比较最大不同是啥?(生能答,不能教师引导:这个式子中间是等号,叫等式。板书:等式)
问:能再举几个这样的等式吗?
(生举例,教师选择三个写在贴于黑板的卡片上。)
这时黑板上的卡片有:
300+200=500 100+x<300
100+x>100 100+x=250
80+x>100 100+50<300
5×a=40 x+200 x+x=8
三、探究交流,抽象概括
1.分类、建构概念
让全班观察黑板上的8个算式,根据它们的特点,小组讨论,试将他它们分类并说明理由。
学生讨论。
问:谁来说说你们是按照啥标准分的?
(1)如果学生中有“是否含有未知数”(板书:含有未知数)“是否是等式”(板书:等式)这两类的重点说,其余的口头交流。
(2)让按“是否含有未知数”分的学生把式子分成两堆。
问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是啥式子?(含有未知数)那这几个呢?(没有未知数)
问:你能把这一种(指含有未知数)再分成两类吗?怎么分?指名板演。
(或者让按“是否是等式”分的学生把式子分成两堆。
问:按照不同的标准,有不同的结果。这一种分法,我们得到的这几个式子是啥式子?(是等式)那这几个呢?(不是等式)
问:你能把这一种(指是等式)再分成两类吗?怎么分?指名板演。
根据学生的思路来讲。)
问:你们发现了这一类式子有啥特点?(揭示:含有未知数的等式)
师:像这样,含有未知数的等式我们把它叫做方程。(板书:像这样含有未知数的等式,叫做方程。)一起读一遍。(学生齐读)这也是我们今天这堂课要学习的内容。(板书课题:方程的意义)
2.理解、巩固概念
师:自己理解一下方程的概念,方程必须具备哪几个条件?(未知数和等式)
师:你会自己写出一些方程吗?(生答:会。)请四个学生到黑板上板演写两个,其他同学在作业纸上写。
写好后,请同学们用手势一起判断对错,说说你是怎么判断的。同桌互改。
小结:判断一个式子是不是方程,一看是不是等式,二看有没有未知数。
(出示课件)问:老师这儿也有几个式子,它们是方程吗?(用手势表示,随机让学生说说为啥)
6+x=14 3+x 50÷2=25 ab=18
6+x>23 51÷a=17 x+y=18
问:通过这几道题的练习,你对方程有了哪些新的认识?
(1)未知数不一定用x表示。
(2)未知数不一定只有一个。
四、巩固提高,形成技能
1.判断
下边哪些式子是方程?(课本54页“做一做”)
35+65=100 x -14>72
y+24 5x+32=47
28<16+14 6(a+2)=42
2.你知道吗?
课件动态显示关于方程的小知识。
你知道吗?早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的史料。一直到三百年前,法国数学家笛卡儿第一个提倡用x、y、z等字母代表未知数,才形成了现在的方程。
3.练练思维
孟老师今年的年龄加上7就是30岁,你知道老师今年几岁了吗?
某同学今年的年龄的2倍是22岁,他今年几岁?
4.提高智慧
小刚集邮共360张,小红集邮共400张,怎么才能使两人的邮票张数一样多?
5.数学游戏:小博士用他的手遮住了所写的内容。他想让你们猜猜他写的式子是不是方程。(用多媒体设计出手的形状盖在方格上)
(1)□ +x > 40 (不是)
(2)x÷□=80 (是)
(3)3×□=24 (不一定)
让学生判断并说明理由。
(第三题:如果方格中填的是未知数这个式子就是方程,如果填的是8就不是方程,填其它的数就是一个错误的算式。)
五、总结提升。
回想一下刚才我们上课开始写的那个表示我们全学校师生总人数的式子,现在老师告诉你一共有432人,你能得到怎么样一个方程并知道老师有多少人吗?(24人)好聪明!这是我们下节课将要学习的内容,希望同学们也能像今天一样积极动脑,脚踏实地地走好每一步,去解开更多生活中的未知数,去迎接更多新的挑战!
作业设计:
1.作业本25页。
2.口算一页。
板书设计:
方程的意义
其他式子
含有未知数的等式
3077+ x
等式
不等式
像这样含有未知数的等式,叫做方程。
《方程的意义》教学设计 篇4
教学理念:让学生在广泛的探究时空中,在明主平等、轻松愉悦的气氛里,应用已有知识经验,通过自主预习、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程、方程的解与解方程之间的关系,并能进行辨析,学会用方程表示简单情境中的等量关系,提高观察能力、分析能力和解决实际问题的能力。初步建立分类的思想,进一步感受数学与生活之间的密切联系。
教学目标:
1、 借助天平明白等式的含义,并在分类的基础上充分感受、认识啥是方程。
2、 会用方程表示数量关系。
3、 培养学生观察、描述、分类、抽象、概括、应用等能力。
4、 感受方程与现实生活的密切联系,体验数学活动的探索性。
重点:理解方程是含有未知数的等式;
难点:方程的意义抽象的过程。
课前谈话:渗透平衡和等量(谈体验)
教学过程:
一、激情导入:
出示天平,(见过天平吗?在那里见过?有啥作用啊?)根据天平的状态列出不同的式子,(不平衡让学生想办法得出让天平两边平衡)。
二、探究新知:
1.对不同的式子进行分类(不要有任何要求)
让学生先独立思考,然后小组合作交流自己的想法。
2.小组汇报分类的想法。小组之间在倾听的过程中逐渐完善自己本组的想法。
让小组的代表说说自己组是怎么样分类的?为啥这样分类?
3.教师根据各小组的分类进行小结:像这样的用等号连接左右两边的叫做等式。像这样的这一类叫方程。板书课题。(在学生分类的基础上)
4.小组探究“啥是方程?”(先观察式子,独立思考,后小组交流)
5.小组汇报各组的想法。在各组倾听的基础上逐渐完善自己的想法。
6.教师在学生小组汇报的基础上进行小结:像这样,含有未知数的等式叫方程。
7.生举例。
8、师举例,让学生说哪些是方程哪些不是方程,并说明理由。
9、通过刚才的几道算式,让学生说说对方程也有了哪些新的认识?
10、判断两句话:所有的方程都是等式,所有的等式都是方程。
11、画图表示方程与等式之间的关系。
三.应用练习
1.判断下列式子是不是方程。
2.看图列方程。
3.根据题意列方程。
四.拓展延伸
1、谈谈自己在知识和情感上的收获。
2、送给同学们一个方程:天才+x=成功。
《方程的意义》教学设计 篇5
教学内容:苏教版四年级(第八册)教学目标: (1)使学生理解方程概念,感受方程思想。 (2)经历从生活情景到方程模型的建构过程。 (3)培养学生观察、描述、分类、抽象、概括、应用等能力。教学过程:
一、创设情景,抽象数学模式。1.出示实物天平。(实物天平比较小,用屏幕上的天平来模拟实验。)2.两个大iPhone和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢?(说明两边的重量可能有三种不同的关系。)用式子描述重量之间的相等关系。3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?用式子表示两队比分的关系。红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了χ分,请你猜一猜,两队的情况会怎么样呢?用式子来表示比分的三种关系。4.创设四个情景。(1)每个情景中数量之间有啥关系?(2)你能用关系式清晰地来描述吗?
二、引导分类,概括方程概念。刚才我们对情景的描述得到了很多式子。200+200=400 18 < 23 18+χ<23 18+χ>23 18+χ=23280 > 100 120 < 4χ 25+χ=70 22y+720=10501.学生尝试第一次分类。可能有几种不同的分法。(1) 看是否是等式。(2) 看是否含有未知数。……2.学生尝试第二次分类。得到四组不同的式子。3.描述每一组的特征。4.引导概括方程概念。含有未知数的等式叫方程。 三、抓等量关系,体会方程本质。1.演示动态平衡。有等量关系,能用方程表示2.出示情景(没有等量关系,不能用方程表示。)出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)3.通过今天这节课,你学到了啥呢? 四、联系实际,应用与拓展。1.周老师从无锡到徐州来上课。(1)线段图。(2)我乘火车从无锡站开出,每小时行χ千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。(3)到了徐州站,我买了3枝圆珠笔,每枝χ元,付出20元,找回2元。 2.情景图。本届奥运会上,中国台北队获得了χ枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:“中国台北队金牌数的16倍正好等于中国队的金牌数。”女孩说:“日本队的金牌数等于中国台北队的8倍。” 3.开放题。 小芳集邮共260张,小明集邮共300张。怎么样才能使两人的集邮张数一样多? (用方程表示) “方程的意义”教学设计的说明 在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。整体的把握:数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握: 形式层面——含有未知数的等式(是关系的一种)。这是一种静态的结论。 发现层面——经历方程模式的生成过程,它来源于现实也回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。 直观具体层面——举出正例或反例。 直觉层面——一种数学的意识、一种方程的感觉。 这样才能形成一个有力的认知结构(其中包含知识结构、办法结构和经验结构)目标的把握:经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。 渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。过程的把握: 统揽全局基础上的局部聚集,突出“知识胚胎”的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出“知识胚胎”的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。 本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太“散”的问题。 经历“问题情景——数学模型——解释与应用”的全过程。从“问题情景——数学模型”展开数学化和结构化的过程。再从“数学模型——解释与应用”展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。
《方程的意义》教学设计 篇6
教学内容:数学书p53-54及“做一做”,练习十一1-3题。
教学目标:
初步理解方程的意义,会判断一个式子是否是方程。
会按要求用方程表示出数量关系。
培养学生观察、比较、分析概括的能力。
教学重难点:会用方程的意义去判断一个式子是否是方程。
教具准备:天平、空水杯、水(可根据实际变换为其它实物)
教学过程:
导入新课
今天我们上课要用到一种重要的称量工具,它是啥呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,进而称出物体的质量。
新知学习
实物演示,引出方程。
操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;
第二步,往往空杯子里倒入约150毫升水(可在水中滴几滴红墨水),问:发现了啥?天平出现了倾斜,因为杯子和水的质量加起来比100克重,现在还需要增加砝码的质量。
第三步,增加100克砝码,发现了啥?杯子和水比200克重。现在,水有多重,知道吗?如果将水设为x克,那么用一个式子该怎么表示杯子和水比200克重这个关系呢?100+x>200。
第四步,再增加100克砝码,天平往砝码这边倾斜。问:哪边重些?怎么样用式子表示?让学生得出:100+x<300.
第五步,把一个100克的砝码换成50克,天平出现平衡。现在两边的质量怎么样?用式子怎么样表示?让学生得出:100+x=250。
像这样含有求知数的等式,人们给它起了个名字,你们知道叫啥吗?对,叫方程。请大家试着写出一个方程。
写方程,加深对方程的认识。
学生试着写出各种各样的方程,再在全班展示,当然也有可能会出现一些不是方程的式子,教师应引导学生说出它不是方程的原因。
看书第54页,看书上列出的一些方程,让学生读一读。然后小结:一个式子要是方程需要具备哪些条件?两个条件,一要是等式,二要含有求知数(即字母),这也是判断一个式子是不是方程的依据。
反馈练习。
完成做一做,在是方程的式子后面打上“√”。对于不是方程的几个式子要说明其理由。
小结。
这节课学习了啥?怎么判断一个式子是不是方程?
提问:方程是不是等式?等式一定是方程吗?
看“课外阅读”,了解有关方程产生的数学史。
练习
完成练习十一第2题,先让学生说出图意,再根据图意再列出相应的方程。
独立完成第3题,评讲时,简介啥叫数量关系要,然后让学生先说出各幅图中的数量关系,再说出相应的方程,同一幅图由于数量关系有不同的形式,因此方程形式也可能不同。
作业
练习十一第1题。
《方程的意义》教学设计 篇7
教学目标:
1、使学生理解方程的意义,知道啥是方程的解,啥是解方程,并弄清等式与方程的关系。
2、会判断啥是方程,会解一步计算的方程,并会检验方程的解。
3、使学生养成良好的检查、验算习惯。
教学重点:理解方程的意义。
教学难点:理解等式与方程的关系。
教学过程:
一、创设情境
我们学过了用字母表示数,下面用含有字母的式子表示下面各题的数量关系。(口答)
(1)x与6的和 (2)x与4的和
(3)20减x的5倍的差 (4)x的2倍加1. 8
在上婴儿园的时候你都喜欢玩哪些游戏呢?
看看这两位小孩子在做啥游戏?你想不想玩?
那接下来我们也一起来玩一玩。
老师有65千克(板书:65)你呢?(指名学生)
请大家闭上眼睛想一想,当我与他坐上翘翘板两端的时候,会出现怎么样的情况呢?
那怎么样就能使翘翘板平衡了呢?
你能用一个式子把它表示吗?(板书:30+35=65,左右两边相等)
同学们,你们在生活中见过与翘翘板相类似的物体吗?(天平)
今天我这里有一架天平,谁能简介一下天平的使用办法吗?(那啥时候天平就平衡了呢?当两重量相等的时候或者指针指向中间的时候。)
你了解得的可真多!
二、探究新知
1、理解方程的意义
师:这里也有两架天平也保持着平衡,你能用一个算式表示出来吗?
(1)20+30=50 (2)20+x=100
师:那么x是多少?(80克)这个x是固定的值。能不能随便的说?(不能)前面我们学的用字母表示数时可以表示任意的数,但这里是一个固定的值,不能表示任意的数,只能是使等式左右两边相等的值。
师:那么这两个算式有啥不同?(含有未知数)
同学们,真厉害!
前几天,学校也新买了3只篮球,(出示篮球图)共用去186元,同学们,你们能用一个等式来表示吗?(板书:3x=186)
大家观察一下这几个等式,你能不能把它们分分类?
30+35=65 20+x=100
20+30=50 3x=186
揭示方程概念:含有未知数的等式叫方程。(板书)
2、比较等式和方程
下面我们观察一下,它们有啥相同?啥不同?(小组讨论)
得出相同点:都是等式,不同点:方程含有未知数
强调:方程必备两个条件:一、含有未知数。二、等式
谁能用这个图来表示等式和方程的关系?(小组讨论)
谁能说说等式和方程的关系 等式
方程
那你能说几个方程吗?
练习:下面哪些是方程?哪些不是方程?
35-x=12 84÷12=7 4x-32
49÷x=7 450x=900 69+x
3、自学啥是解方程、方程的解
(1)学生自学课本99页,回答下列问题:
a:啥是方程的解?
b:啥是解方程?
c:方程的解和解方程一样吗?
d:和以前学的求知数有啥关系?
4、解方程
下面我们一起来解方程
例1 x-18=30 根据被减数=差+减数
解: x=30+18
x=48
检验 把x=48代入原方程。
左边=48-18=30,右边=30
左边=右边
所以x=48是原方程的解。
进一步明确:方程的解和解方程
解方程和求知数也有啥不同呢?
三、巩固练习
1、试一试:4x=6.4(要求写出检验过程)
2、判断:
(1)、含有未知数的式子叫做方程。 ( )
(2)、方程是等式,所以等式也是方程。( )
(3)、检验方程的解是否正确,应当把求得的解代入原方程。( )
(4)、x=36是方程x÷3=12的解。 ( )
(5)x=1是方程。( )
3、选择
(1)x-12=20的解是( )
a、x=18 b、x=32
(2)4x=6的解是( )
a、x=1.5 b、x=2
(3)3x-7=21这个式子是( )
a、方程 b、不等式 c、既是等式也是方程
(4)x=5是方程( )的解
a、15x=3 b、3x+2=17
4、解方程(机动)
28+x=92 x÷16=5(要求写出检验过程)
四、小结
通过学习你有啥收获?
你觉得哪些地方值得注意?
板书:
30+35=65
20+30=50
20+x=100 含有未知数的等式叫方程。
3x=186 使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
《方程的意义》教学设计 篇8
教学目标:
1、经历从生活情境到方程模型的建构过程。
2、理解方程概念,感受方程思想。
3、通过观察、描述、分类、抽象、概括、应用的学习活动过程达到学习水平的提高。
教学过程:
一、情境创设,初建相等关系模型。
1、师出示天平图,
认识吗?
师:天平可以称出物体的质量是多少。
2、(媒体出示三幅图)下面的三幅图中,哪一幅能称出两只iPhone的质量?
(左右倾斜各一幅,平衡的一幅。图略)
学生会选择图3,老师顺着学生的思路出示图3天平平衡图
图3为啥能称出两只iPhone的质量?
你能用一个式子表示出天平两边物体的质量关系么?
100+100=200
图1和图2为啥不能称出两只iPhone的质量呢?
你也能用一个式子表示出天平两边物体的质量关系吗?
100+100>100、100+100<500
3、三个式子都是表示物体之间质量的关系,数学上把这样表示两边相等的关系的式子叫做等式。
你的小脑袋里有等式吗?说一个试试。
除了用加法表示的还有不一样的吗?(师板书学生说的其它的一些式子)
师:没想到,同学们对等式是这么的熟悉。
二、借助基础,拓展等式外延。
1、下面的几幅图中,天平两边物体的质量关系,哪些可以用等式表示?能表示的试着把它写下来,不能的思考可以用一个啥样的式子表示呢?
(书上四幅图略)
选一个等式说一说它表示啥意思?
天平两边物体的质量关系,一种是用语言表达,一种是用数学式子表示,你愿意选择哪一种?说说你的理由。(突出简洁、清楚)
2、师:的确,这样的一些数学式子能清楚、简洁地表示出天平左、右两边物体质量之间的关系。
3、比较:现在写的这些等式与刚才我们说的那些等式有啥不同吗?
突出含有未知数的等式
这些含有未知数的等式你见过吗?
生:没见过;也可能见过,如:用字母表示数中、求未知数x等。
三、进一步拓宽对等式的理解。
1、顺着学生的思路组织教学:李老师就为同学们准备了一些生活中同学们常见的一些现象,仔细看一看,这些生活中的现象之间的关系是不是也能用含有未知数的等式来表示呢?
(师出示四幅生活情境图)
(1)铅笔盒与笔记本共20元。
(2)借出的书与剩下的书共150本。
(3)3瓶相同的色拉油,每瓶x元,共8元。
三、明确特征,归纳概念。
其实呀,数学上给这样一些含有未知数的等式起了个很特别的名字叫方程,这就是我们今天要研究的方程的意义。(板书)
揭示数学上我们把含有未知数的等式叫做方程。
四、深刻领悟,挖掘内涵。
1、黑板上的其它式子为啥不是方程?
2、师:现在同学们知道啥是方程了吗?下面哪些是等式,哪些是方程?(是等式的男生举手,是方程的女生举手)
36-7=29、60+x>70、8+x
6+x=14、7+15=22、5y=40
活动结束了,但思考却刚刚开始,就等式和方程的关系你现在有啥话想说的吗?
(在活动中理解等式与方程的关系)
五、实践应用,拓展外延。
1、你能看图列出方程吗?
图1:天平(2x=500)
图2:四个物体16.8元
图3: 两杯水共有450毫升
2、从文字表述中找出方程
(1)小明从家到学校有500米,他每分钟走50米,走了x分钟。
(2)张师傅每天做x个零件,用了6天做了780个零件。
(3)王涛放学回家后,去商店买了3本精装笔记本,每本y元。他付给售货员阿姨20元,找回2元。
3、李老师头脑中有一幅图,我把它用方程表示了出来,猜一猜,老师头脑中可能会是一幅啥样的图?
出示:5x=200(可提示:如天平图等)
个别交流的基础上同桌互说。
六、全课总结:学习到现在你有哪些收获?
从不能用方程表示到能用方程表示图中的数量关系的一种演变。
图1:买4个小熊猫玩具,每个x元,120元不够
图2:买3个,每个x元,120元还不够
图3:买2个,每个x元,120元正好
延伸:使两只水杯一样多你能有哪些办法?用方程表示,你能吗?
《方程的意义》教学设计 篇9
教学内容:人教版《义务教育课程标准实验教科书·数学》五年级上册第53-54页“方程的意义”。
教学目标:
1.理解方程的意义,会区分等式与方程。
2.经历从生活情境到方程建构的过程,体会方程是刻画现实生活的一个有效的数学模型。
3.培养动手操作、细心观察的学习习惯,发展数学思考、语言描述、概括应用的能力。
教学过程:
一、创设情境,激情导入
师:我小时候喜欢玩一种游戏,相信你们也一定玩过。看--(课件演示两学生玩跷跷板)
生:(兴奋地说)跷跷板!
师:这个游戏里也含有数学问题。瞧!他俩为啥不玩了?
生1:一边的学生太重,另一边的学生太轻。
生2:两边的同学体重不一样,不能正常玩。
师:如果让你玩,你想怎么玩?为啥?
生:我会找一个和我体重一样的同学玩,这样跷跷板就会平衡,玩起来比较轻松。
师:这位同学用了“平衡”一词,说明跷跷板两边的同学体重是一样重,或者说两边的同学体重是相等的。(板书:平衡、相等)
师:受跷跷板平衡的启发,人类很早就发明了称物体质量的天平。(出示实物天平)
[评析:利用学生熟悉的游戏情景引入新课,使学生有“话”可说,有感而发,“诱导”出了“平衡”,为“等式”概念的引入做好铺垫。]
二、操作天平,体验“平衡”的意义
师:看!这就是一台天平。科学课上见过吧。谁来说一说天平的使用办法呢?
生:一盘内放物品,另一盘放砝码;当天平的指针指在中央时,表示天平平衡;放砝码时要用镊子……
师:你的简介很详细。这架天平太小,后面同学可能看不清楚,我们通过大屏幕看看怎么样正确使用天平!
(课件演示用天平称杯子的质量,老师叙述:在天平的左盘内放所称的杯子,右盘内放砝码,不断调整砝码,使天平平衡。)
师:天平的指针指在中央,表示天平平衡了,也就是天平的左边=右边,说明了啥?
生:说明这个杯子的质量是100克。 (板书:1只杯子=100克)
师:为了帮助同学们完成学习任务,进一步体会平衡的含义,下面我们要四人一组,用简易天平称物品的质量。要想更好地完成实践活动,称之前,一定要认真听听活动规则。(课件出示)
师:谁能用洪亮的声音给大家读一读。
生:同学们好,现在我来说一下活动规则:
活动一:拿出一袋物品放入托盘,另一盘放入砝码,调试至天平平衡,则称出该物品的质量;
活动二:再放入另一袋物品一起称,调试砝码至天平平衡,再将称得的结果填入记录单。
最后比一比哪个小组的同学既抓紧时间也遵守规则。祝同学们活动顺利!
师:老师再送给你们三个字:低、轻、静。小组合作时声音要低;放物品和砝码时动作要轻;活动结束要静。小孩们赶快行动吧!
(学生分小组动手操作,老师巡视参与指导,约5分钟。)
[评析:组织小组合作学习,关键是要让学生明白干啥,怎么做;“低、轻、静”三个字即是对学生小组学习的要求,更是对学生学习习惯的培养,对学生基本行为习惯的培养。]
师:同学们在称物品时分工明确,配合默契,说明大家会合作学习。现在请小组推荐代表,汇报你们的结果。
生1:我们小组在活动一中称得:大米=20克;在活动二中称得:20+黄豆=70克。(板书:20克+黄豆=70克)
师:看他们小组听得多认真呀,我们应该向他们学习!
师:哪一个小组跟他不一样,请上来汇报。
生2:我们小组在活动一中称得:黄豆=10克;在活动二中称得:10+绿豆=110克。(板书:10克+绿豆=110克)
……
师:我刚才看到同学们写出很多像这样的式子,下面我们只选取其中两个式子来进行研究学习。
师:这些式子都是用等号连接的。数学上就把“用等号连接的式子”叫等式。它表示等号左右两边相等(板书:等式)
师:其实,“等式”大家并不陌生,我们在过去已学过的加、减、乘、除运算时就得到许多“等式”,如 6×7=42就是等式,你们见过的等式太多了,谁能说几个?
生1:50+30=80、36÷4=9……
生2:75-10=60、20×5=100、14+6=20……(板书:20×5=100)
师:这些式子都表示左右两边相等,所以都是等式。
[评析:使学生经历学习过程,获得情感体验,在体验中理解“平衡”的数学表达式就是“等式”,其含义是“表示左右两边相等的式子”;组织学生开展小组合作学习,是新课程提倡的学习方式,合作要有分工,要有一定的数学思维价值,用“一个数学式子表达一次天平称重的结果”具有一定的数学思维含量,是让学生“体会方程是刻画现实生活的一个有效的数学模型”的尝试实践。]
三、引入未知数,理解方程的意义
师:刚才同学们分组体验了用天平称物品质量的过程,我们回顾刚才的过程,看大屏幕。(课件演示)
师:刚才称出杯子的质量是100克,现在向杯子里倒水,看发生了啥情况?
生1:天平两边不平衡。
生2:天平一边高,一边低。
师:为啥?
生:因为你向杯子加(倒)了水。
师:我倒了多少水?
生:不知道。
师:不知道倒的水有多少,刚学过的知识,该怎么样表示?
生:(异口同声)用字母x表示。(板书:x)
师:对,这正是我们前面学习过的知识。当然还可以用其它字母来表示,如:y、z等都可以。
师:左盘中杯子和水的质量怎么样用式子表示呢?
生:100+x 。(板书:100+x)
师:100+x这个式子左盘中水杯的总的质量。再看天平,你有办法让它平衡吗?
生:在右盘中再加砝码。
师:看,我加了一个100克的砝码,天平平衡了吗?哪端重?
生:没有平衡,杯子一端重。
师:这说明杯子加水的质量大于200克。这是用数学语言来描述的,还可以用数学式子简单地表示为:l00+x>200。(板书:l00+x>200)
师:要想平衡怎么办?
生:还可以继续加砝码。
师:我也加了一个100克的砝码,天平平衡了吗?说明啥?怎么样用数学表达式来表示?
生1:没有平衡。
生2:左盘重,说明杯子和水的质量小于300克。
生3:可以用100+x<300表示。
师:它表示啥?(板书:100+x<300)
师:你还有办法让天平平衡吗?
生:把右托盘中100克的砝码换成50克的。
师:可以换砝码,试一试看,怎样?
生:天平平衡了。
师:说明了啥?用式子怎么表示?
生1:说明杯子和水重250克。
生2:可以用100+x=250来表示。
师:100+x=250就准确地表达出“杯子和水共重250克”(板书:100+x=250)
师:刚才我们已知道“表示左右两边相等的式子叫等式”,想一想,下面哪个式子是等式?
生:我认为100+x=250是等式。
师:为啥?这个等式和前面的等式有啥不同?
生:因为它用等号连接,表示两边相等。这个等式和其他等式比多了一个未知数。
师:观察的很仔细,找得非常准确!就因为在这个等式中多了一个未知数,就给它取了一个新的名字--方程,这就是我们这节课所要研究的内容。(板书课题:方程的意义)
师:啥叫方程呢?试着用自己的话给同桌说说。(同桌互相交流,师板书:含有未知数的等式,称为方程。)
师:看黑板,请你默默地读一读,品味品味这句话的关键词。
生1:等式。
生2:未知数。
师:英雄所见略同。
师:请大家朗读一遍。
师:很好,再来一遍。
师:你觉得方程有啥特征?先独立想一想,想好了,同桌再相互交流。
生1:这个式子必须是等式,用等号“=”连接。
生2:等式中一定要有未知数。
师:我同意你们的观点。抓住了关键词,找出了方程的特征。
师:你能把黑板上的这两个有未知量的等式改写成方程吗?(两生板演)下面的同学自己写一些方程。
师: 看这位同学写出的是方程吗?(集体举手判断)
师:谁来读一下自己写的方程。(集体举手判断)
师:同桌互相判断,有问题的快速改正。
师:刚才通过学习,我们认为像100+x=250是方程,那么这两个式子(l00+x>200,100+x<300)你认为它们是方程吗?为啥?
生:不是方程,因为它们不是等式。
师:是的,它俩叫不等式。等上中学我们会学习它的。
[评析:利用多媒体回顾小组学习过程,梳理由“平衡”到“不平衡”再到“平衡”的过程,形象具体,影响深刻,帮助学生建立“平衡就是天平左右两边相等”、“等式”是表述其相等关系的数学表达式,进一步建立“方程“的概念。]
四、联系实际,应用拓展
师:看来同学们理解了方程的意义,掌握了方程的特征,现在打开课本第54页“做一做”,是方程的画对号,完成在书上。
(学生独立完成,然后展示结果)
学生全部判断正确。
师:再来个快速判断,下边哪些式子是方程?(手势打出vx)
35+65=100 x-14>72 y+24 5x+32=47 28<16+14 6(a+2)=42
师:你们这么快,就作出了准确的判断,能说出诀窍吗?
生1:我是根据方程的特征来判断的。
生2:含有未知数的等式,才是方程。
师:这是科学的办法,真能学以致用!
师:我这里还有一些式子,你能挑出等式吗?(课件出示)
2、下列各式那些是等式?
①45+32=77 ②5÷x=12 ③3x-4=22 ④2×21=42
⑤a+b=90 ⑥y÷6
生1:①、②、③、④、⑤是等式。
师:在这些等式中,哪些是方程?
生2:5÷x=12、3x-4=22、a+b=90是方程。
师:通过这个图,你能说说等式和方程之间的关系吗?同桌互相交流。
生3:方程一定是等式,而等式不一定是方程。
师:简练、明了。
师:其实方程就隐含在我们的生活中,人们发现在我们的衣食住行中,有很多问题都能用方程的办法来解决。试试看!(课件出示)
3、在生活中体会方程
衣:母亲带50元钱给我买了一件t恤后,还剩下26元。
食:小强去麦当劳,买了一袋薯条和一个l0元的汉堡,一共用了l5元。
住:同学们参加社会实践活动,3个人住一个房间,多少个房间能住102人?
行:公交车上有一些人到谢家湾站时,有13人下车,18人上车,车上还剩36人。
师:你想试哪一个?
生1:我想试“衣”。(生读题)
师:能用方程来表示吗?先写在练习本上,再想一想未知数代表的是啥?
生2:x+26=50
生3:50-x=26
师:这是方程。
生4:x代表t恤的价钱。
生5:我想试“食”。 我是这样写的x+10=15,x代表的是一袋薯条的价钱。
生6:我想试试“行”。
师:你能直接口答吗?
生7:x-13+18=36,x代表的是车上原有的人数。
生7:我想说最后一个“住”。102÷3=x,x代表的是房间数。
师:习惯上都把未知数写在等号的左边。也可以这样表示3x=102
师:刚才我们用方程表达了日常生活中的衣食住行问题,同样,也可以用日常生活来描述方程。
(课件出示)结合生活中的事例解释方程。
①y+19=54
②x-14=36
③z-13十15=37
师:选择自己喜欢的来说。
生1:我想说第2个,我有一些钱,买学习用品花了14元,还剩36元。
师:真是个爱学习的好小孩。
生2:我想说第1个,我有一些零花钱,母亲也给了我19元,一共有54元。
师:要学会合理使用零花钱。
生3:我想说第3个,公交车上有一些人到百货大楼站时,有10人下车,12人上车,车上还剩30人。
师:先下后上,文明乘车。
……
师:听了同学们的描述,老师认为大家确实理解了方程的意义,会把生活和数学联系起来学习了,很好!
[评析:练习是学生学习数学形成技能的主要途径,训练是课堂教学的主线,保证每个学生参与学习活动、参与练习。安排五次练习,针对学习目标和教学重点,具有层次性和开放性,保证学生练习时间,注重教学的实效性。]
五、课堂总结、评价
师:通过本课的学习,你学会了啥?
生1:我知道了含有未知数的等式,称为方程。
生2:我会区分等式和方程。
生3:我知道了生活中的很多问题,都能用方程的办法来解决。
师:抓住了重点,概括的简洁明了。
师:你觉得,你或者你的同伴在这节课上表现怎样?
生5:我的同桌听课认真,回答问题也很积极。
……
师:在日常生活中,方程还存在着很多的奥妙,等待着我们去了解、去探索,今天的合作非常愉悦,谢谢同学们,下课!
[总评:数学教学要要体现生活化,学习内容应当是现实的、有意义的、富有挑战性的,要有利于学生积极地进行观察、实验、推理与交流等数学活动,;数学教学应向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和办法,获得广泛的数学活动经验。本课教学按照情景创设—“玩跷跷板”引出“平衡”、组织学生实践“称重”体验“天平平衡”理解“等式”含义、多媒体课件演示“平衡”—“不平衡”—“平衡”理解方程的意义、多层次练习、课堂总结评价五个主要教学环节,通过组织学生开展小组合作学习获得亲身体验,师生、生生之间讨论交流建立概念,引导学生进行判断、辨析、表述、讲述等练习方式巩固理解概念,取得了较好的教学效果。]
《方程的意义》教学设计 篇10
师出示天平,左盘放一茶壶,右盘放两茶杯,天平保持平衡。问:这说明啥?如果设一把茶壶重a克,1个茶杯重b克,则可以用一个等式来表示:即a=2b(板)。
师:想一想,怎么样变换能使天平仍然保持平衡呢?待学生思考片刻,进而问:往两边各放一个茶杯,天平会发生啥变化?
教师演示加以验证,在已平衡的天平两边同时增加一个相同的杯子,天平保持平衡。这个过程可以表示为a+b=2b+b 。
师:如果两边各放上2个茶杯,天平还保持平衡?两边各放上同样的一个茶壶呢?
学生回答后,老师一一演示验证。
师:想一想,怎么样变换能使天平保持平衡?天平两边增加同样的物品,天平保持平衡。如果天平两边减少同样的物品,天平会保持平衡吗?
生:平衡
在第三步的基础上同时减少一个茶壶,天平保持平衡,用式子表示就是2a-a=2b+a-a 。因此天平保持平衡的规律概括起来可以怎么说?天平两边增加或减少同样的物品,天平会保持平衡。(课件)
应用,进一步验证。展示数学书p55页第2幅图的场景,1个花盆和几个花瓶同样重呢?该怎么办?两边同时减少一个花瓶,天平保持平衡。
师: 通过刚才的实验,我们发现了啥,谁来总结一下
生:(1)天平两边同时增加或减少同样的物品,天平保持平衡;
(2)天平两边的质量同时扩大或缩小相同的倍数,天平保持平衡。
师: 我们可以发现,天平保持平衡时可以用一个等式来表示,当天平两边发生变化时,等式的两边也在发生变化,天平保持平衡,等式也保持不变。从天平保持平衡的规律,我们可以发现等式保持不变的规律吗?想一想,四人小组讨论。
生: (1)等式两边都加上或减去相同的数,等式保持不变;(2)等式两边都乘或除以相同的数(0除外),等式不变。
反思:本节课从看得见、摸得着的天平到抽象的方程,是学生认识上的一大飞越,要让学生达到由具体到抽象的真正理解,就要在教学过程中把传授知识变为渗透思想,教给学生学习知识的办法。本节课巧妙地把天平与方程中“相等”联系起来,让学生在不断调整天平平衡的过程中,对方程的意义有了较好的理解。数学学习需要学生有一个积极探索的心态,有一个敢干质疑的精神。在本环节中为学生创设了一个相互交流、相互学习、相互帮助解决的和谐的课堂学习环境,同时也让学生在相互交流中深化了新知,在交流中提高了准确表达能力,这样不仅使课堂有了活气,学生放得开,学得活,而且从思想上给了学生一个思维的台阶,使得教学难点得以分解.
《方程的意义》教学设计 篇11
教学内容:
教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。
教学目标:
理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。
教学重点:
理解并掌握方程的意义。
教学难点:
会列方程表示数量关系。
教学过程:
一、教学例1
1.出示例1的天平图,让学生观察。
提问:图中画的是啥?从图中能知道些啥?想到啥?
2.引导
(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。
(2)如果学生能积极列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”
二、教学例2
1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。
2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有啥共同的特点。
3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。
三、完成练一练
1.下面的式子哪些是等式?哪些是方程?
2.将每个算式中用图形表示的未知数改写成字母。
四、巩固练习
1.完成练习一第1题
先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。
2.完成练习一第2题
五、小结
今天,我们学习了啥内容?你有哪些收获?需要提醒同学们注意啥?还有啥问题?
六、作业
完成补充习题
板书设计:
方程的意义
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式叫做方程
《方程的意义》教学设计 篇12
一 。教材分析
教材内容选自义务教育课程标准实验教科书(人教版)五年级(上册)第53页——54页。做一做。练习十一 1——3题。教材的编写意图是从等式引入,首先通过天平演示,说明天平平衡的条件是左右两边所放物体质量相等。同时得出一只空杯正好100克,然后在杯中倒入水,并设水重x克。通过逐步尝试,得出杯子和水共重250克。进而由不等到相等,引出含有未知数的等式称为方程。
为提供更为丰富的感知材料,教材提出:你会自己写出一些方程吗?然后通过三位小孩子在黑板上写方程的插图,让学生初步感知方程的多样性。
在“做一做”里,教材给出了6个式子,让学生识别哪些是方程。要让学生明白,未知数还可以用不同的字母表示。
“你知道吗”的阅读材料,简要简介了有关方程的一些史料。通过让学生阅读,了解一些有关方程的历史和发展。
二。学法指导
学生在学习了用字母表示数量关系以后通过一定的情景进一步学习方程的意义,列方程和用方程表示简单的数量关系。学生要在熟悉用含有字母的式子表示数量关系的基础上理解和掌握方程的意义。在天平的演示情景中观察,思考,讨论,探究。说出方程的特点并由不等的式子到相等的式子,进而推导方程的意义并能扩展到根据方程的意义列出简单的方程和用方程表示简单数量关系。
三。教法
1.指导思想
本课教学是以天平的演示实验为情景引入教学内容的,教学引导学生充分地观察,探究,积极掌握有关知识和技能;进行合作学习和探究,培养学生的交流意识,发现意识。
2.教学办法
根据五年级学生的知识结钩和认知水平,从生活实际中的情景——用天平称量物体重量入手,通过教学课件的使用使学生观察“等式”——“不等式”——“方程”的演示过程,深刻理解方程是含有未知数的等式。然后结合几道判断题让学生举例深化对方程意义的理解,最后设计二组情景让学生列出方程和用方程表示数量关系使方程的概念得到拓展和沿伸。
四。 教学流程
1.旧知练习,学前准备
这一部分共安排了4道填空题。目地是通过复习用含有字母的式子表示数量关系来为本节课的内容作铺垫进而引入本课的课题“方程的意义”。
2.情景引入,探究新知
从天平的认识入手,让学生了解一些天平的使用知识。然后演示出天平左右盘分别放一个空杯子和一个100克的珐码,使学生观察到在天平平衡的情况下空杯子的重量和珐玛的重量是相等的。进而为等式的引入作铺垫。继续演示,在杯中倒满水,天平倾斜,说明不平衡,得到100+x》100的不等式。再增加珐码,也得到100+x《300的不等式。最后天平逐渐平蘅,左右两边相等,得到100+x=250这样一个含有未知数的等式,称为方程。使学生理解,方程应该是一个等式,而且是一个含有未知数的等式。这样就让学生初步掌握了方程的意义。接着将式子中的x换成b,式子还是方程。说明方程中的未知数可以用不同的字母表示。
3.深化概念,强化理解
先出示一组式子判断是不是方程,说出判断的理由,使学生对方程的概念作初步的理解和判断。讨论m+n=3是否是方程,让学生知道方程中的未知数可以不只一个。最后让学生写出一些方程和举出反例是对学生知识和技能及运用能力的培养。
4.联系实际,应用拓展
(1)列出第62页第2提的方程是让学生在熟悉的情景中根据方程的意义列出方程。
(2)用方程表示数量关系的情景是对用含有字母的式子表示数量关系和方程的意义的整合运用。引导学生列出方程,还可启发学生列出不同的方程。
5.总结全课:对教学内容进行梳理。
6.课堂作业:当堂练习或课下完成。
《方程的意义》教学设计 篇13
一、教学目标:
1、初步理解方程的意义,会判断一个式子是不是方程。
2、会按要求用方程表示出数量关系。
3、培养学生观察、分析、比较、概括及创新的能力。
二、重点:会用方程的意义去判断一个式子是不是方程。
三、难点:依据多种不同的标准对式子进行不同的分类。
四、教具准备:天平、礼物(100克)、水杯(40克)、多媒体课件
五、教学过程:
1、简介天平、导入新课:
展示从古埃及到现代的各式天平图,简介天平的历史。
教师称量100克物体(礼物)的重量,学生观察。(学生未使用过天平)
2、分组实践、写出式子:
学生实践的任务是:称量礼物+水杯的重量(共140克)。
同学们能用字母来表示一下水杯的重量吗?(x,y,m……)
同学们能用含有字母的式子来表示礼物和水杯的总重量吗?(礼物重量已知100克)(100+x,100+y,100+m……)
第一次试称量:放一个50克的砝码,物体的重量和砝码表示的重量有怎么样的关系?能用式子表示下来吗?(得到式子100+x<150);
第二次试称量:取出50克砝码,放入20克砝码,物体的重量和砝码表示的重量有怎么样的关系?(得到式子:100+x>120);
第三次称量:再放入一个20克的砝码,得到天平平衡,这时物体的重量和砝码表示的重量有怎么样的关系?(得到式子:100+x=140)。
3、自主探索、合作交流:
老师这里也有这样的一些式子:
35+65=100 x-14>72 y+24
5x+32=47 28<16+14 6(a+2)=42
同学们自己先分一分,看有几种不同的分法,然后以小组为单位,互相交流,并整理。
4、展示结果、得出结论:
以小组为单位实物投影展示分类情况。
其中一组分类情况:35+65=100,x-14>72,y+24,28<16+14分为一组,5x+32=47,6(a+2)=42分为一组。
若学生们未分出这种分类情况,应该肯定分出:x-14>72,y+24,28<16+14为一组,35+65=100,5x+32=47,6(a+2)=42为一组这种分法。此时可以引导:第二组还可以再分类吗?还可以分为哪两类?学生就会分得5x+32=47,6(a+2)=42在一组,根据其特点:既是等式,也含有未知数,引出方程的意义:含有未知数的等式是方程。
5、巩固练习、扩展延伸:
基础练习:
你能写出二个方程吗?
老师这里有一些式子,你们能判断哪些是方程吗?并说明理由。
扩展提高:
判断下面的式子哪些是等式,哪些是方程。同学们发现了啥?
同学们能用图示来表示一下方程和等式的关系吗?小组探究。
教师引导:所有方程都是等式,方程是等式的一种(必须含有未知数)。
出示一些简单数学情境,找出等量关系并列出方程。如:三个球一共20.3元。两个部分一部分是5.2,另一部分是x,全部是6.5。
6、课堂总结:
同学们今天认识了方程,谁能说一说你对她的了解。读《小知识》,了解方程的历史。
推荐站内搜索:双休日日记、北京科技大学考研成绩查询、中华美德颂演讲稿、初中周记范文、广东联考成绩查询、河北省高等教育自学考试成绩查询、教资考试时间2020下半年考试时间、湖北学位英语成绩查询、河北高考答案、350字日记、