第一册一元一次方程(精选5篇)第一册一元一次方程(精选5篇)第一册一元一次方程(精选5篇)

欢迎光临
我们一直在努力

第一册一元一次方程(精选5篇)

第一册一元一次方程(精选5篇)

第一册一元一次方程 篇1

  一、教学目标 :

  1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

  2、通过观察,归纳一元一次方程的概念

  3、积累活动经验。

  二、重点和难点

  重点:归纳一元一次方程的概念

  难点:感受方程作为刻画现实世界有效模型的意义

  三、教学过程 

  1、课前训练一

  (1)如果 | | =9,则  =           ;如果 2 =9,则  =            

  (2)在数轴上距离原点4个单位长度的数为                    

  (3)下列关于相反数的说法不正确的是(     )

  A、两个相反数只有符号不同,并它们到原点的距离相等。

  B、互为相反数的两个数的绝对值相等

  C、0的相反数是0 

  D、互为相反数的两个数的和为0(字母表示为 、 互为相反数则 )

  E、有理数的相反数一定比0小

  (4)乘积为1的两个数互为 倒数  ,如:

  (5)如果 ,则(      )

  A、 , 互为倒数   B、 , 互为相反数    C、 , 都是0    D、 , 至少有一个为0

  (6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过 周后树苗长高到1米,依题意得方程(     )

  A、    B、    C、   D、 00

  2、由课本P149卡通图画引入新课

  3、分组讨论P149两个练习

  4、P150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为 米,那么长为( +25)米,依题意可列得方程为:(      )

  A、 +25=310   B、 +( +25)=310   C、2 [ +( +25)]=310   D、[ +( +25)] 2=310

  课本的宽为3厘米,长比宽多4厘米,则课本的面积为             平方厘米。

  5、小芳买了2个笔记本和5个练习本,她递给售货员10元,售货员找回0.8元。已知每个笔记本比练习本贵1.2元,求每个练习本多少元?

  解:设每个练习本要 元,则每个笔记本要         元,依题意可列得方程:

  6、归纳方程、一元一次方程的概念

  7、随堂练习PO151

  8、达标测试

  (1)下列式子中,属于方程的是(     )

  A、    B、     C、   D、

  (2)下列方程中,属于一元一次方程的是(       )

  A、     B、     C、    D、

  (3)甲、乙两队开展足球对抗比赛,规定每队胜一场得3分,平一场得1分,负一场得0分。甲队与乙队一共进行了10场比赛,且甲队保持了不败记录,甲队一共得22分。求甲队胜了多少场?平了多少场?

  解:设甲队胜了 场,则平了          场,依题意可列得方程:                   

  解得 =                

  答:甲队胜了        场,平了        场。

  (4)根据条件“一个数 比它的一半大2”可列得方程为                      

  (5)根据条件“某数 的 与2的差等于最大的一位数”可列得方程为              

  四、课外作业  P151习题5.1 

第一册一元一次方程 篇2

  复习目标:

  (1)了解方程、一元一次方程以及方程的解等基本概念。

  (2)会解一元一次方程。

  (3)会根据具体问题中的数量关系列出一元一次方程并求解。

  重点、难点:

  1. 重点:

  一元一次方程及方程的解的基本概念。

  一元一次方程的解法。

  会用一元一次方程解决实际问题。

  2. 难点:

  一元一次方程的解法的灵活应用。

  寻找实际问题中的等量关系。

  【典型例题】

  例1.

  分析:明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

  在这里特别注意:未知数的次数及系数。

  这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

  解:

  例2.

  分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的值。

  此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,怎样求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,进而求出m的值。

  解:

  将m=1代入关于x的方程,得:

  例3.

  解:

  注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

  例4.

  分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的办法比较麻烦,所以要观察分析方程找一种比较简单的办法。

  解:

  例5.

  分析:此题中分母出现小数,如果用一般的办法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的办法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

  解:

  注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

  解:

  例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

  分析:列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,进而列出方程。比如以车身长度为等量,可列方程,设车的速度为x m/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为x m

  解一:设车的速度为x m/s

  经检验,符合题意。

  答:车的速度为20m/s。

  解二:设车身的长度为x m

  经检验,符合题意。

  答:车的速度为(1000+200)/60=20m/s

  例7. 某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

  售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

  分析:此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

  解:设团体票共2a张,零售票共a张,零售票价x元

  经检验,符合题意。

  答:零售票价为19.2元。

  【模拟试题】

  一. 填空题。

  1. 已知方程 的解比关于x的方程 的解大2,则 _________。

  2. 关于x的方程 的解为整数,则 __________。

  3. 若 是关于x的一元一次方程,则k=_________,x=_________。

  4. 若代数式 与 的值互为相反数,则m=_________。

  5. 一元一次方程 的解为x=0,那么a、b应满足的条件是__________。

  二. 解方程。

  1.

  2.

  3.

  4.

  三. 列方程解应用题。

  1. 一商贩以每个鸡蛋0.24元购进一批鸡蛋,但在途中不慎碰坏12个,剩下的鸡蛋以每个0.28元售出,结果获利11.2元,问该商贩当初买进多少个鸡蛋?

  2. 分别戴着红色和黄色旅游帽的若干同学坐一只船,在公园内划船,突然间,一个戴红帽子的同学说:“我看到的我们船上的红帽子和黄帽子一样多。”这时一个戴黄帽子的同学说:“不对,你错了,我看到的红帽子是黄帽子的2倍。”问:戴红帽子和黄帽子的同学各有多少人?

  【试题答案】

  一. 填空题。

  1.                     2.

  3. 1,1                     4.                   5.

  二. 解方程。

  1.                      2.

  3.                    4.

  三. 列方程解应用题。

  1. 买364个鸡蛋

  2. 戴红帽子4人,黄帽子3人

第一册一元一次方程 篇3

  学 习目标:

  1、进一步经历运用方程解决实际问题的过程。

  2、提高学生找等量关系列方程的能力。

  3、培养学生的抽象、概括、分析和解决问题的能力。

  4、学会用数学的眼光去看待、分析现实生活中的情景。

  重点:

  1.怎样从实际问题中寻找等量关系建立方程,解决问题后怎样验证它的合理性.

  2. 解决打折销售中的有关利润、成本价、卖价之间的相关的现实问题。

  难点:

  怎样从实际问题中寻找等量关系建立方程.

  学习指导:

  一、知识准备

  1.通过社会调查,亲历打折销售这一现实情境,了解打折销售中的成本价、卖价和利润之间的关系。进而能根据现实情境提出数学问题。

  2.谈一谈:

  请举例说明打折、利润、利润率、提价及削价的含义分别是啥?

  3.算一算:

  (1)原价100元的商品,打8折后价格为             元;

  (2)原价100元的商品,提价40%后的价格为          元;

  (3)进价100元的商品,以150元卖出,利润是            元。

  二、学习新课

  一、思考:

  1、把下面的“折扣”数改写成百分数。九折    八八折   七五折

  2、你是怎么样理解某种商品打“八折”出售的?

  二、问题:1、 说说“打折销售”中自己有过的亲身经历。

  2、假设你是一个商店老板,你的追求是啥?

  3、你是怎么样理解商品的利润?

  三、 新知探讨

  1  、你认为商品的标价、折数与商品的卖价之间有怎么样的关系?

  2、结合实际,说说你从打折销售中可以获得哪些数学问题?

  (1)某商店出售一种录音机,原价430元,现在打九折出售,比原价便宜多少钱?

  (2)一种画册原价每本16元,现在按每本11.2元出售。这种画册按原价打了几折?

  (3)、为庆祝“六一儿童节”,某书店所有儿童读物一律八折优惠,小明花了24元买了一套读物,请问这套读物原价是多少?

  (4)一家商店将某种服装按成本价提高40%后卖出,已知每件服装的成本价是125元,每件服装获利多少?

  2、例题:一家商店将某种服装按成本价提高40%后标价,也以8 折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?

  如果设每件服装的成本价为x元,根据题意,

  (1)每件服装的标价为:(       )

  (2)每件服装的实际售价为:(    )

  (3)每件服装的利润为:(        )

  (4)列出方程,并解答:

  四、回顾与反思通过这节课的学习,你最大的收获是啥?在调查中你还遇到哪些难解的问题,看看大家是不是可以给你解答?

  作业 :作业 纸

第一册一元一次方程 篇4

  一、目的要求     使学生会用移项解方程。

  二、内容分析

  从本节课开始系统讲解一元一次方程的解法。解一元一次方程是一个有目的、有根据、有步骤的变形过程。其目的是将方程最终变为x=a的形式;其根据是等式的性质和移项法则,其一般步骤是去分母、去括号、移项、合并、系数化成1。

  x=a的形式有如下特点:

  (1)没有分母;

  (2)没有括号;

  (3)未知项在方程的一边,已知项在方程的另一边;

  (4)没有同类项;

  (5)未知数的系数是1。

  在讲方程的解法时,要把所给方程与x=a的形式加以比较,针对它们的不同点,采取步骤加以变形。

  根据方程的特点,以x=a的形式为目标对原方程进行变形,是解一元一次方程的基本思想。

  解方程的第一节课告诉学生解方程就是根据等式的性质把原方程逐步变形为x=a的形式就可以了。重点在于引进移项这一变形并用它来解方程。

  用等式性质1解方程与用移项解方程,效果是一样的。但移项用起来更方便一些。

  如解方程               7x-2=6x-4

  时,用移项可直接得到  7x-6x=4+2。

  而用等式性质1,一般要用两次:

  (1)两边都减去6x;       (2)两边都加上2。

  因为一下子确定两边都加上(-6x+2)不太容易。因此要引进移项,用移项来解方程。移项实际上也是用等式的性质,在引进过程中,要结合教科书第192页及第193页的图强调移项要变号。移项解方程后的检验,可以验证移项解方程的正确性。

  三、教学过程 

  复习提问:

  (1)叙述等式的性质。

  (2)啥叫做方程的解?啥叫做解方程?

  新课讲解:

  1.利用等式性质1可以解一些方程。比如,方程 x-7=5

  的两边都加上7,就可以得到                     x=5+7,

  x=12。

  也如方程                           7x=6x-4

  的两边都减去6x,就可以得到      7x-6x=-4,

  x=-4。

  然后问学生怎样用等式性质1解下列方程   3x-2=2x+1。

  2.当学生感觉利用等式性质1解方程3x-2=2x+1比较困难时,转而分析解方程x-7=5,7x=6z-4的过程。解这两个方程道首先把它们变形成未知项在方程的一边,已知项在方程的另一边的形式,要达到这个目的,可以在方程两边都加上(或减去)同一个数或整式。这步变形也相当于

  也就是说,方程中的任何一项改变符号后可以从方程的一边移到另一边。

  3.利用移项解方程x-7=5和7x=6x-4,并分别写出检验,要强调移项时变号,检验时把数代入变形前的方程.

  利用移项解前面提到的方程   3x-2=2x+l

  解:移项,得              3x-2x=1+2。①

  合并,得                      x=3。

  检验:把x-3分别代入原方程的左边和右边,得

  左边=3×3-2=7,   右边=2×3+1=7,  左边=右边,

  所以x=3是原方程的解。

  在上面解的过程中,由原方程①的移项是指:

  (l)方程左边的-2,改变符号后,移到方程的右边;

  (2)方程右边的2x,改变符号后,移到方程的左边。

  在写方程①时,左边先写不移动的项3x(不改变符号),再写移来的项(改变符号);右边先写不移动的项1(不改变符号),再写移来的项(改变符号),便于检查。

  课堂练习:教科书第73页  练习

  课堂小结:

  1.解方程需要把方程中的项从一边移到另一边,移项要变号。

  2.检验要把数分别代入原方程的左边和右边。

  四、课外作业 

  习题2.1  P73 复习巩固

第一册一元一次方程 篇5

  教学目的

  1、 使学生会分析相向而行的同时与不同时出发的相遇问题中的相等关系,列出一元一次方程解简单的应用题。

  2、使学生强化了解列一元一次方程解应用题的办法步骤。

  教学分析

  重点:利用路程、速度、时间的关系,根据相遇问题中的相等关系,列出一元一次方程。

  难点:寻找相遇问题中的相等关系。

  突破:同时出发到相遇时,所用时间相等。注重审题,进而找到相等关系。

  教学过程 

  一、复习

  1、列方程解应用题的一般步骤是啥?

  2、路程、速度、时间的关系是啥?

  3、慢车每小时行驶48千米,x小时行驶 千米,快车每小时行驶72千米,如果快车先开0.5小时,那么慢车开出x小时后,快车行驶了 千米。

  二、新授

  1、引入

  列方程解应用题,关键是寻找相等关系,今天我们通过一例来学习怎样寻找相等关系,和把相等关系表示成方程的办法。

  例(课本P216例3)题目见教材。

  分析:(1)可以画出图形,明显有这样的相等关系:

  慢车行程+快车行程=两站路程

  设两车行了x小时相遇,则两车的行程的代数式分别为85x,65x,放入相等关系中,即可得出方程:85x+65x=450

  (2)再分析快车先开了30分两车相向而行的情形。

  同样画出图形,并按课本讲解,(见教材P217~218)

  由学生完成求解过程,并作出答案。

  解:略

  说明:(1)本题是相向而行的相遇问题,共同点是有一个相同的相等关系,即慢车行程+快车行程=两站路程。不同点是一个同时出发,一个不是同时出发,所以所用时间不一定相等。

  (2)不是同时出发的,要注意时间的关系。

  三、练习 

  P220练习:1,2。

  四、小结

  1、相向而行的相遇问题,相等关系都是慢车行程+快车行程=两站路程。

  2、相向而行的相遇问题中,要注意时间的关系。

  五、作业  

  1、P222 4.4A:13,14,15。

  2、基础训练:同步练习3。

推荐站内搜索:100字日记大全、南京财经大学红山学院分数线、谢谢你作文、100000000000字作文、自学考试时间、江苏省考研成绩查询、公务员职位表2023查询、人生感悟日志、陕西教师资格证报名时间、广西教师资格证报名时间、

第一册一元一次方程(精选5篇)
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:第一册一元一次方程(精选5篇)
文章链接:https://678999.cn/92846.html
本站资源仅供个人学习交流,请于下载后24小时内删除,不允许用于商业用途,否则法律问题自行承担。

一路高升范文网

提供各类范文...

联系我们联系我们

登录

找回密码

注册