本站 小编为你精心整理了47篇《乘法分配律教学设计》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在本站 搜索到更多与《乘法分配律教学设计》相关的范文。
篇一:《乘法分配律》教学设计
教材分析
乘法分配律是北师大版小学数学四年级的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析
学生分析
我班学生中,近一半学生思维活跃,知识面比较广,多数学生学习数学的兴趣很浓,参与数学探索的意识也很强,并能够联系实际利用所学知识解决生活中的数学问题。但有的个别学生基础较差、有的学生学习习惯不好、占班级人数三分之一多,所以在设计教学过程时,我注意做到面向全体学生,尽量关注每个学生的发展。在前面教学中发现学生对于用字母表示规律的掌握是比较牢固的,而对于一些有规律的数字也只是进行简单的竖式计算,没有发现有些数字相乘之后积的特点,没有发现简算的意义。因此,要让学生在计算中体会出简算的必要和方便,让学生亲身经历将实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对数学理解的同时,在思维能力方面得到进步和发展。
教学目标
教学目的:
知识与能力
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点
教学重点:理解并掌握乘法分配律――发现问题、提出假设、举例验证、探索出乘法分配律。
教学难点:乘法分配律的推理及应用。
篇二:《乘法分配律》教学设计
教学目标
知识与技能:引导学生探究和理解乘法分配律。
过程与方法:感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。教学重点:乘法分配律的意义和应用。
教学难点:乘法分配律的反应用。
教具学具:多媒体课件
教学过程
一、复习引入
前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。
什么是乘法的交换律和结合律?
今天这节课我们再来学习乘法的另一个运算定律。
二、新课探究
出示主题图:还记得我们提出的第三个问题吗?
参加植树的一共有多少人?
1、你怎样解决这个问题?列式计算
2、汇报:
第一种算法:先算每个小组里有多少人?
(4+2)×25
=6×25
=150(人)
第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。
4×25+2×25
=100+50
=150(人)
3、观察这两个算是有什么特点?
4、讨论,你得到什么结论?
5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。
6、小结:这个规律就是乘法分配律。
7、用字母怎样表示这个规律?
三、巩固练习
1、P27做一做
2、拓展:乘法分配律是否也适用于减法?
验证:18x5-5x8(18-8)x5
265×105-265×5265×(105-5)
结论:适用【2】教材分析:本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。
因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
篇三:《乘法分配律》教学设计
教学内容
义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律。
教材分析
本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。
学情分析
本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。
教学目标
1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。
2、使学生感受数学与现实生活的`联系,初步感受运用乘法分配律能进行一些简便运算。
3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。
教学重点
理解乘法分配律的意义。
教学难点
发现与归纳乘法分配律。
教学准备
课件习题卡
教学过程
一、结合实事创设情景,引入新课
1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!
2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?
3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?
二、合作交流,探索发现新知
1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知――乘法分配律。
板书:乘法分配律
2、发现和归纳乘法分配律
(1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的发现和同桌说一说好吗?
(2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?
(3)生举例并展示,共同验证并读一读式子。
(3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?
(4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书P36读一读。
3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。
三、小结
同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?
四、分层练习,逐级达标
1、填一填:习题卡第一题
巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。
学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。
2、看一看:习题卡第二题
3、应用:请生完成书P38第7题。使学生感受学习乘法分配律的用处是使计算简便。
五、回顾课程,进行总结
同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?
篇四:《乘法分配律》教学设计
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。
教学目标
1.使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。
2.使学生在发现规律的过程中,发展观察、比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.使学生能联系实际,主动参与探索、发现和概括规律的学习活动,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和信心。
教学过程
一、创设比赛场景,在活动中激趣
谈话:听说我们四(1)班的同学口算速度快,正确率高,想不想显一显身手?那我们来一个速算比赛怎么样?
A组B组
(1)135×6+65×6(1)(135+65)×6
(2)9×37+9×13(2)9×(37+13)
在A组同学不服气,说B组容易时,教师激趣:是吗?B组容易?那我们再来一次好吗?
A组B组
(1)(10+4)×25(1)10×25+4×25(2)(4+8)×125(2)4×125+8×125
谈话:为什么这次A组又输了?观察观察,可不要冤枉了老师。你们有什么发现?(学生讨论交流)
小结:这真是一个了不起的发现。一切数学知识来源于发现问题,而一个伟大的数学家有所成就在于他发现问题。看看今天我们的同学们发现一个怎样的数学知识。有信心吗?给自己鼓鼓掌!
谈话:同学们,我们学校有5个同学就要去参加“海安县首届批发王杯少儿才艺大赛”了,声乐兴趣小组的于老师准备为他们每人买一套一样的漂亮服装,我们一起去看看好吗?
【评析:玩是学生的天性。心理学研究表明:促进人素质、个性发展的最主要途径是实践活动,而“玩”正是儿童所特有的实践活动形式。如何让学生玩出效果来?教师提供了一个“竞赛”的机会,让学生在“竞赛”中发现竞赛的不公平,近而寻找不公平的原因,激发了学生学习的兴趣。在探究原因的过程中,学生潜移默化地感知了同组算式之间的关系。】
二、创设活动情境,在合作中探究
1.交流算法,初步感知
(课件出示例题情境图)
谈话:从图中你了解到了哪些信息?于老师可以怎样搭配服装?
(1)学生的选择方法1:买5件夹克衫和5条裤子
一共要付多少元呢?你能解决这样的问题吗?学生独立列式计算。(教师巡视,安排不同方法解答的学生板演,并了解全班学生采用的什么方法)
反馈:你是怎样解决这一问题的?为什么这样列式?
组织学生交流自己的解题方法,再分别说说两个算式的意义。(课件显示)
谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?
学生在自己的本子上写,教师巡视。
[教师板书:(65+45)×5=65×5+45×5],让学生读一读。
(2)学生的选择方法2:买5件短袖衫和5条裤子
提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?
根据学生回答,列出算式:32×5+45×5和(32+45)×5
再问:这两个算式有什么关系?可以用什么符号把它们连接起来?
[教师板书:(32+45)×5=32×5+45×5]
启发:比较这两个等式,它们有什么相同的地方?
2.深入体验,丰富感知。
现在请每个同学拿出信封中的练习纸,想一想在这几组算式中,哪些可以用等号连起来(在□里画=号),哪些不能?当然你可以先计算每组中两个算式的得数,也可以仔细观察。
在得数相同的两个算式中间的□里画“=”
(1)(28+16)×7□28×7+16×7
(2)15×39+45×39□(15+45)×39
(3)74×(20+1)□74×20+74
(4)40×50+50×90□40×(50+90)
(5)(125×50)×8□125×8+50×8
分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?有办法使他们变得相等吗?(课件显示修改过程)
谈话:你能写出几组类似这样的式子吗?大家动手写一写。(提醒学生认真算一算你写出的等式两边是不是相等)
学生举例并组织交流。(比较这些等式是否具有相同的特点)
3.反思学习,揭示规律
提问:像这样的等式,写得完吗?像这样等号左边和右边的式子都会相等,这是不是巧合?还是有什么规律存在?
谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
如果用a、b、c代表上面等式中的数,这个规律怎样表示?[板书:(a+b)×c=a×c+b×c板书好适当图例解释意思]
小结:同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(课件显示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。)
对于乘法分配律,用字母来表示,感觉怎样――简洁、明了,这就是数学的美!
【评析:深层次的探究,教师不急于点明规律,维持学生的好奇心,通过学生讨论,使学生积极主动地去发现总结规律,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识,让学生体会到成功的快乐。】
三、巩固内化知识,在实践中运用
谈话:让我们带着自己发现的数学知识进入今天的“数学乐园”吧!
1.大显身手
出示“想想做做”第1题,让学生在书上填一填。
师:第2题你是怎么想的?
小结:乘法分配律可以正着用,也可以反着用。[补充板书:a×c+b×c=(a+b)×c]
2.生活应用
(“想想做做”第3题)
小结:说说两种方法的联系。
3.巧妙运用
(“想想做做”第4题)(同桌一人做一组,做在练习本上)
谈话:每组两道算式有什么联系?哪一题计算比较简便?
现在你知道上课开始时为什么B组同学算得快吗?
小结:乘法分配律可以使计算简便。
4.明辨是非
我校二年级有3个班,每个班有34人。三年级有2个班,每个班有36人。二三年级一共有多少人?
王小明这样计算:
(3+2)×(34+36)
=5×70
=350(人)
①观察一下,你赞同王小明的算法吗?为什么?
②要用乘法分配律,要有什么条件?
5.巧猜字谜
猜一猜,等号后边是三个什么字?
人×(1+2+3)=
6.大胆猜想
如果把乘法分配律中的加号改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?
学生小组交流猜想。
谈话:我们再回到课开始的那条题目上,如果于老师想知道“买5件夹克衫比5件短袖衫贵多少元?”你能帮她吗?试试看!
教师组织、引导学生总结得出:
(a-b)×c=a×c-b×c
小结:大家真了不起!让我们为自己的伟大发现热烈鼓掌吧!
【评析:例题的第三次变式,为学生的猜想提供了素材,也让本课学生的探究得到延伸,拓展了“乘法分配律”的意义。练习的设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。】
四、回忆梳理知识,在反思中总结
今天这节课,你有什么收获?
五、布置作业:“想想做做”第5题。
篇五:《乘法分配律》教学设计
《探索与发现(三)乘法分配律》教学反思
东新四小学 王唯
教学内容:
小学四年级数学(上)《探索与发现(三)》乘法分配律》教材第48页
教学目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
教学重点:理解乘法分配律的特点。
教学难点:乘法分配律的正确应用。
教学过程:
一、复习回顾
(出示课件1)计算
35×2×5=35×(2×)
(60×25)×4=65×(×4)
(125×5)×8=(125×)×5
(3×4)×5 × 6=(×)×(×)
师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。
二、探究发现
(出现课件2)
师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?
生:我发现有两个叔叔在贴瓷砖
生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。
师:你最想知道什么问题?
生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题) 师:你能估计出工人叔叔一共贴了多少块瓷砖吗?
生:我估计大约有100块瓷砖
生:我估计大约有90块瓷砖。
师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)
师:谁来向大家介绍一下自己的做法?
生:6×9+4×9(板书)
=54+36
=90
分别算出正面和侧面贴的块数,再相加,就是贴的总块数。
生:(6+4)×9(板书)
= 10×9
=90(块)
因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的块数,就是一共贴瓷砖的块数。
师:同学们的计算方法都很好,请同学们仔细观察两种算法,你能发现什么?
生:我发现计算方法不同,但结果却是一样的。
6×9+4×9 = (6+4)×9(板书)
师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?
(学生举例,教师板书)
师:这几们同学举的例子符合要求吗?请在小组中验证一下。 (小组汇报)
小组1:符合要求,因为每组中两个算式都是相等的。
小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。
(板书用=连接算式)
师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。
小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。
小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。 结论(课件2):师:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做 乘 法 分 配 律。它是我们学习的关于乘法的第三个定律。
师:大家齐读一遍。
师:和同桌说一说自己对乘法分配律的理解。
师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。
(a+b)×c=a×c+b×c
师:这叫做乘法分配律
三、巩固练习:
1、计算
(80+4)×25 34×72+34×28
师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。
2、判断正误
( 25 + 7 )×4 = 25 ×4 ×7×4 ( )
35×9 + 35
= 35×( 9 + 1 )
= 350 - - - - ( )
3、填一填
(12+40)×3=× 3 +×3
15×(40 + 8) = 15×+ 15×
78×20+22×20=(+ )×20
四、总结
师:说说这节课你有什么收获?
师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。
[板书设计]
探索与发现(三)
-----乘法分配律
(a+b)×c=a×c+b×c
6×9+4×9 =(6+4)×9
(40+4)×25 = 40×25+4×25
(64+36)×42 = 42×64+42×36
篇六:《乘法分配律》教学设计
知识与技能:
引导学生探究和理解乘法分配律。
过程与方法:
感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
情感与态度:
培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。教学重点:乘法分配律的意义和应用。
教学难点:
乘法分配律的反应用。
教具学具:
多媒体课件
教学过程
一、复习引入
前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。
什么是乘法的交换律和结合律?
今天这节课我们再来学习乘法的另一个运算定律。
二、新课探究
出示主题图:还记得我们提出的第三个问题吗?
参加植树的一共有多少人?
1、你怎样解决这个问题?列式计算
2、汇报:
第一种算法:先算每个小组里有多少人?
(4+2)×25
=6×25
=150(人)
第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。
4×25+2×25
=100+50
=150(人)
3、观察这两个算是有什么特点?
4、讨论,你得到什么结论?
5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。
6、小结:这个规律就是乘法分配律。
7、用字母怎样表示这个规律?
三、巩固练习
1、P27做一做
2、拓展:乘法分配律是否也适用于减法?
验证:18x5-5x8(18-8)x5
265×105-265×5265×(105-5)
结论:适用
篇七:《乘法分配律》教学设计
教学目标:
1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
2、通过观察、分析、比较,培养学生的分析、推理和概括能力。
3、发挥学生主体作用,体验探究学习的快乐。
教学重点:指导学生探索乘法的分配律。
教学难点:乘法分配律的应用。
教学准备:课件、口算题、例题、练习题等。
教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。
教学流程:
一、设疑导入
师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?
生:可以使计算简便。
师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)
【设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。】
二、探究发现
1。猜想。
师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)
师:这道题算得怎么不如刚才的快啊?
生:它和前面的题目不一样。
师:好,我们来看一下它与前面的题目有什么不同?
生:前面的题都是乘号,这道题既有乘号还有加号。
生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。
师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。
生:(10+4)×25=10×25+4×25。
师:为什么这样算哪?
生:我是根据乘法分配律算的。
师:你是怎么知道的?你知道什么是乘法分配律吗?
生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。
师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)
2。验证。
师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)
师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)
小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?
师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?
3。结论。
生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。
师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)
师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?
(a+b)×c=a×c+b×c
师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。
【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】
三、练习应用
(生练习应用定律。)
师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
四、总结
师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)
反思:
本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:
一、主动探究,实现亲身经历和体验
现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特殊的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个探究过程中,学生经历了一次严密的科学发现过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。
二、多向互动,注重合作与交流
在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,教师在本课教学中立足通过师生多向互动,特别是通过学生与学生之间的互相启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一运算定律的主动建构。学生对“乘法分配律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。
篇八:《乘法分配律》教学设计
教学目标:
1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。
2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。
3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重点:理解和掌握乘法分配律的推导过程。
教学难点:理解和掌握乘法分配律的推导过程。
教学准备:课件,卡片(课前发给学生)
教学过程:
一、拟定自学提纲
自主预习
1.创设情境:(多媒体出示24页情境图)
教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?
(学生可能提出济青高速公路全长大约多少千米?
相遇时大巴车比中巴车多行多少千米?)
(教师把这两个问题板书在黑板上。)
教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。
2.出示学习目标:这节课的学习目标是:(多媒体出示)
(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。
(2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。
教师引导:有信心达到这两个目标吗?(有!)
老师的指导会对你们的学习有很大的帮助,请看自学指导:
3.出示自学指导(认真看课本第24页到25页第二个红点前的内容,重点看图上同学的对话。思考:
(1)如何求济青公路的全长,有几种解法,如何列式计算。
(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?
(3)什么叫乘法分配律,如何用字母表示?
5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)
4.学生按自学指导自学,教师巡视,关注学困生。
二、汇报交流评价质疑
调查学情:看完的同学请举手!看会的请放下。
1.小组交流:
学习中你有哪些收获、困惑和体会,请在小组内交流一下。
2.班内汇报:
师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。
课堂生成预设:
(1)济青高速公路全长大约多少千米?
教师追问:第一种算法是先算什么,再算什么?第二种算法呢?
预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;
预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)
(2)相遇时大巴车比中巴车多行多少千米?
(110-90)×2110×2-90×2
=20×2=220-180
=40(千米)=40(千米)
教师追问:你能说说两种算式的意思么?
预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;
预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。
(3)观察、比较两种算法的过程和结果,你有什么发现?
预设一:第一种算法是先加(或减)再乘;
预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。
(4)据此,你有什么猜想?
预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
(5)怎样验证你的猜想呢?
(师用线段图帮助学生理清思路)
学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。
通过观察,有何发现?引导学生回答:
举例验证:(125+12)×8=125×8+12×8
(40-4)×25=40×25-4×25
(8+16)×125=8×125+16×125
(80-8)×125=80×125-8×125
…………
(6)通过验证,你能得出什么结论?
结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。
(板书课题)你会用字母表示这个规律吗?
(用字母表示:(a±b)c=ac±bc)
三、抽象概括总结提升
1.通过以上研究,你得到了什么结论?
课堂预设:
预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。
预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。
预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
预设四:这个规律叫乘法分配律,可以用字母表示为:
(a±b)c=ac±bc
2.如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的猜想?
课堂预设:
举例验证:(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
…………
教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。
设计意图:将乘法分配律适当拓展
3.在记忆这个规律时,应该注意什么?
课堂预设:
预设一:括号里的每一个数都要乘括号外的数。
预设二:括号里的数必须是相加或相减,如果是相乘就不是乘法分配律。
预设三:这个规律还可以倒过来看。
教师追问:怎样倒过来看?
预设:几个数都乘同一个数,再相加或相减,可以先把它们相加或相减,所得的和或差再乘这个数,结果不变。
四、巩固应用拓展提高
教师引导:怎么样?学会了吗?想不想挑战一下自己?
1.考一考(课件出示第26页第2题)
(1)指4名学困生板演,其余同做在练习本上。
(2)展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。
课堂预设:(以第一题为例)
(80+70)×5(80+70)×5
=80×70+70×5=80×5+70×5
2.议一议
(1)你认为谁的答案对,为什么?谁的答案不对,为什么?
(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。
(3)用同样的方法评议其余3题。
(4)同桌互改
(5)统计错题情况,让小组代表说说错误原因。
(6)学生各自订正错题。
3.全课小结:你在本节课中有什么收获?
课堂预设:
预设一:我知道了什么是乘法分配律。
预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。
预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!
五、当堂训练
1.出示课本第26页第3题
2.《新课堂》第17到第19页信息窗2第1课时内容。
同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。
篇九:乘法分配律教学设计
乘法分配律教学设计模板
教材分析:
乘法分配律是冀教版小学数学第八册第24、25页的内容,在此之前,学生已经学习了整数的四则混合运算,两三步运算的实际问题,以及加法减法的交换律与结合律。学生日后将要学习的是小数的四则混合运算及其简便运算,分数的四则混合运算及其简便运算,乃至方程。本课内容在学生的整个学习脉络中起着承上启下的作用。
学情分析:
1.学生已经掌握了类比、迁移的学习方法,有了一定抽象建模的活动经验,并形成了相应符号化的思想。
2.学生对乘法的意义有所理解,已经学习了长方形的周长、面积,四则混合运算以及加法乘法的交换律、结合律。
教学目标:
1.知识与技能目标:在计算、观察、交流、归纳等数学活动中,经历探索乘法分配律的过程。
2.过程与方法目标:理解并用字母表示乘法分配律,能运用乘法分配律进行简便运算。
3.情感态度价值观目标:在探索乘法分配律的'过程中,能进行有条理的思考,能清楚地表达发现的运算规律。
教学重点:
发现、概括乘法分配律并能初步运用规律进行简便运算。
教学难点:
1.从正反应用比较乘法分配律的外形结构,清晰深刻地构建乘法分配律的模型。
2.理解乘法分配律的意义。
教学过程:
一、谈话导入,激发兴趣
师:(出示算式102×25)同学们,你们能一眼看出答案吗?姬老师一下就知道它的答案是2550,想不想知道其中的奥秘?咱们赶快来探索探索吧。
设计意图:简单的导入,既调动了课堂的气氛,又为乘法分配律的简便运算打下了基础,由此自然地过渡到主体环节的学习。
二、创设情境,感知模型
1.师:(播放视频)同学们,国庆前,学校刚刚举行的运动会,大家还记得吗?开幕式的团体操最后一个队形,需要在方队周围拉红色飘带。谁能来说一说图中的已知信息。
生:长12米,宽9米。
师:你们能帮老师算一算需要多少米吗?只列算式不计算。
根据图中的信息,学生会有不同的算法。
生1:(12+9)×2
师:能给大家说说你的思路吗?
生1:先算一条长与一条宽的和,再乘2,就是周长。
师:跟他思路一样的孩子请举手。我们一起再说说他的思路好吗?
生齐声说。
师:谁还有不同的想法?
生2:12×2+9×2
师:你能像刚才的孩子那样来说一说你的思路吗?
生2:先算两条长,再算两条宽,最后相加。
师:跟他思路一样的孩子请举手。我们一起再说说他的思路好吗?
2.师板书两个式子:你们猜猜这两个式子之间是什么关系吗?
生:相等。
师:猜测是科学发现的前奏,你们的眼睛已经看出了精彩的一幕,现在赶快在你们的练习本上验证一下。
学生通过计算汇报:两个式子的答案是相同的。
师:左右答案相同,它们中间可以用“=”连接起来。
设计意图:课程标准里面指出建立模型首先要从我们的现实生活中去抽象出数学问题,所以在这节课的设计当中,我是让学生回到自己现实的体育艺术节这样的一个情境当中去,然后抽象出我们的数学问题,从学生的旧知“周长”出发,以旧引新,让新知不新。由此,自然地过渡到第二个学习环节。
三、探究算理,初次建模
(一)解决问题,发现规律
1.师:同学们,请用你们明亮的双眼观察等号左右两边的式子,你能发现它有什么相同和不同的地方吗?
生1:左右的运算顺序是不同的。
师:左边先算什么后算什么?右边呢?
生1:左边先算加法,再算乘法,右边先算乘法再算加法。
生2:左右参与运算的数是一样的
生3:左右都有加号和乘号。
生4::左右的结果是相等的。
2.师:为什么相等,你能从乘法的意义上来说一说吗?
生:左边12加9的和乘2是21个2,老师右边12个2加9个2,也是21个2,所以它们肯定相等。
3.师:同学们,那你们知道左边的式子是怎么变到右边的吗?右边的式子又是怎么变到左边的呢?咱们先不急着发言,先把你的发现在小组内交流一下好吗?
学生组内交流。
师与生共同总结:从左到右是括号内的加数都与括号外的“2”相乘,最后相加了,也就是(板书:两个加数分别与一个数相乘);而从右边变到左边,是右边这个相同的因数“2”,到了左边乘了剩下两个因数的和,也就是(板书:一个相同的因数乘其余两个数的和)。这就是乘法分配律。板书课题。
师:乘法我们都知道什么意思,分配呢?分就是分别,配就是配对。也就是分别配对。在刚才的式子里,谁跟谁分开了?
生:12和9。
师:谁又和谁配对了?
生:12和2配对,9和2配对。
师:原来这就叫分配呀。
(二)举例探索,掌握规律外形特征,灵活总结规律。
1.师:同学们,具有这样特征的式子,你们还能再写一写吗?请自选3个数,尝试写一写。
找两个同学板书自己写的算式,并读一读。师讲解左右如何变化。
2.师:同学们,如果老师给你一天的时间来写这样的例子,你们能写完吗?一年呢?
生:不能。
师:这样的式子有很多,怎么也写不完,所以他们中间必然存在一定的规律。
设计意图:在这一探究的过程中,探究问题的难度层层递进,学生人人参与,充分发挥各种感官的作用,成功在头脑中初步建立了乘法分配律的模型。由此,自然地进入下一个学习环节。
四、抽象概括,完善模型
1.师:同学们,你们能用你们最喜欢的图形、符号、文字表示出这一规律吗?
师选择比较典型的答案写到副板书上。可再选择其中一个式子,引导学生从乘法分配律的概念上来解释。
2.师:同学们,现在你们知道这个规律到底是什么了吗?能不能用自己的话来说一说。
3.师引导规范学生的说法,即两个数的(和)与一个数(相乘),可以先把两个数(分别)与这个数相乘,再将两个积(相加),结果不变,这就是乘法分配律。
4.师:同学们,你们能像咱们之前学习乘法交换律、结合律那样用字母abc表示出这一规律吗?
学生回答,师板书。
5.创设语境,加深记忆。
师:同学们,咱们把a和b看成是爸爸和妈妈,c看成我。爸爸和妈妈都爱我,等于爸爸爱我、妈妈爱我,也就是爸爸妈妈分别爱我。那么反过来,爸爸爱我,妈妈爱我,也就等于爸爸和妈妈都爱我。所以,a乘b的积加a乘c的积肯定等于a加b的和乘c。
设计意图:在这一探究过程中,渗透了由特殊到一般、再由一般到特殊的认识事物的方法,能够培养学生概括、分析、推理的能力。由此,自然地进入下一个学习环节。
五、回顾旧知,验证模型
师:同学们,这个规律,我们是第一次和它见面吗?
出示ppt:1.两位数乘两位数2.周长3.组合图形求面积。
设计意图:在用旧知验证新知的过程中,加深了新旧知识的内在联系。
六、运用模型,体会价值
(一)再现分配律,脑灵眼快
(1)(48+52)×13=——×2+——×2
(2)27×(16+30)=——×——+——×——
(3)48×13+52×13=(——+——)×13
(4)a×38+a×36=a×(——+——)
设计意图:让学生初步的运用模型去完成,面向全体学生,使学生人人参与,灵活运用定律。
(二)巩固性练习,找朋友
(48+52)×1348×13+52×13
40×5+2×55×(40+2)
74×(19+1)74×19+74
40×50+50×9040×(50+90)
27×(16+30)27×16+30
17×(5+5)17×5+17×5
设计意图:为简算打下基础。
(三)提高辨析,火眼金睛
4×(30+25)=4×30+25
20×5+20×8=20×(5×8)
(5+24)×8=5×24+8×24
74×(20+1)=74×20+74
设计意图:提高学生的思维辨析能力,能辨析各种常见错误。
(四)探究性练习,挑战自我
(1)102×25=
(2)课下思考:乘法对减法的分配律是否也成立呢?
设计意图:引导学生用乘法分配律解算导入时的式子,既照应了开头,又使学生明白,我们为什么要学习乘法分配律。
七、全课小结
篇十:乘法分配律教学设计
教学目的:
1.通过观察、分析、比较,引导学生概括出乘法分配律,理解并且掌握乘法分配律;
2.能运用乘法分配律使计算简便
3.培养学生的分析推理能力
教学重点:抽象概括出乘法分配律
教学难点:理解乘法分配律
教学过程:
一、情境导入
新学期开学,我校四年级班24人去植树每组要买5人挖坑、栽树,2人抬水、浇树,一共多少人参加植树活动?
二、探索新知
1.学生独立解决情境中的问题,试一试你有几种解法。
(教师巡视,指名板书两种解法)
24×5+24×2――24×(5+2)
2.汇报交流,让学生说说每一步的意义,得出等式:
24×5+24×2=24×(5+2)
24×(5+2)=24×5+24×2
3.合作探究特点,归纳乘法分配律
(1)等号左右两边的式子有哪些相同点,有哪些不同点?
(2)从等式的.左边到等式的右边是怎样变化的?
(3)你还能举出像这样的几组等式吗?
(4)用字母表达式来表示这一规律。
(5)试用自己的语言来表述这一规律。
学生合作探究后,小组内汇报交流和全班交流,引导学生归纳出乘法分配律。
4.记忆公式
(1)读课本乘法分配律概念,抓住关键字词理解
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
(2)用简短的关键词表达乘法分配律
和与一个数相乘=积相加
和的积=积的和(什么不同了?)
三、巩固练习
1.填空
28×(100+2)=28×________
(40+4)×25=40__+______
125×3+125×5=125×(_____)
43×46+46×57=(_____)×46
242×101-242=242×(_____)
2、判断
(1)完成课本36页做一做
(2)练习六38页第5题
四、变式练习
1、36×(100-2)=36×________(中间为减号)
2、256×38+256×62=256×(_____)(公式反用)
3、29×99+29=29×(_____)(省略1)
4、36×28+36×70+2×36=36×(______)(三组或多组)
五、全课小结
本节课你有哪些收获?
六、作业布置
练习六6、7、8题
板书设计
篇十一:乘法分配律教学设计
一共有多少学生参加了这次植树活动?
(2+4)×25=2×25+4×25
两个数的和与一个数相乘,可以先把它们分别与这个数相乘,再相加。这叫做乘法分配律。
(a+b)×c=a×c+b×c
篇十二:乘法分配律教学设计
教学内容:北师大版四年级下册数学教科书第36页内容,和练习四的第5、6、7、9题。
教学目标:1.从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。
2.渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。
教学重点:充分感知并归纳乘法分配律。
教学难点:理解乘法分配律的意义。充分感知并归纳乘法分配律。
教具准备:多媒体课件
教学设想:本课试图在一种开放的教学环境下,让学生通过“联系实际,感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分配律”的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主导的教学原则。充分体现了“为解决实际问题而学习数学”的新理念。
活动过程:
一、比赛激趣,提出猜想
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)
9×37+9×63
9×(37+63)
(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
9×37+9×63=9×(37+63)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
二、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)
2、(1)谁能估计一下一共贴了多少块瓷砖?
(2)请大家用自己的方法来验证他的估计是否正确。
(3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)
轻声读这些等式,你发现了什么?
4、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(3)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?四人小组商量一下,这个算式看起来怎样――(稍等)简洁、明了。这就是数学的美。
等号左边表示什么意思?等号右边表示什么意思?大家说的意思实际上就是乘法分配律的文字表述,请看大屏幕,这是老师通过大家的表述总结出来的,谁能给大家读一下。
在读这句话的时候,哪里应特别注意?
请看黑板上的等式,这个等式从左到右成立,反过来从右到左呢?也是成立的。
三、探索发展,应用规律
(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(80+4)×2534×72+34×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
(3)、刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?
38×29+3843×102
(4)、小结:通过研究,你认为怎样的题目才能应用乘法分配律使计算简便?如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。
四、巩固练习,解决问题(我们刚才发现认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习。)
1、请大家根据运算定律在下面的_里填上适当的数。5、6、7题和前面几道题哪里不一样?可以应用乘法分配律吗?为什么?四人小组讨论一下。
2、大家请到数学医院,帮老师判断对错。
3、完成连一连。(给一分钟思考时间,然后抢答)
4、完成填一填。(这道题我找表现最好的小组来开火车)
5、应用题(请大家帮老师解决一个实际问题,在练本上独立完成)
五、全课小结
请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?
请大家想一想,我们是怎样发现乘法分配律的呢?
今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。
篇十三:乘法分配律教学设计
知识与技能目标:
1、经历探索的过程,发现乘法分配律,并能用字母表示。
2、能够运用乘法分配律进行一些简便的计算。
过程与方法:
培养学生观察、归纳、概括等初步的逻辑思维能力。
情感与价值观:
渗透“由特殊到一般,再识由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、自己得出结论的学习意识。
教学重点
理解并掌握乘法分配律
教学难点
乘法分配律的推理及运用
教学准备
多媒体电脑、课件
教学过程
一、用简便方法计算下面各题。
452+199+24838×125×8×3
二、比赛激趣,提出猜想
(1)热身赛。(请看大屏幕,男同学做第一小题,女同学做第二小题,看谁做的又对又快。)
10×37+10×63
10×(37+63)
(2)评出胜负。(做完的同学请举手,汇报计算过程,并提问这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
10×37+10×63=10×(37+63)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
(设计意图:通过一道题目里的两种不同的计算方法,让学生通过观察、类比、发现、概括、归纳,初步了解其中的规律。)
三、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)
2、(1)谁能估计一下一共贴了多少块瓷砖?
(2)请大家用自己的方法来验证他的估计是否正确。
(3)(谁来汇报自己的算法)出示两种不同的算式6×9+4×9和(6+4)×9,为什么这样列算式,观察这两个算式,你有什么发现?(板书)
(设计意图:学生用不同的方法列式计算,为探讨规律做准备。
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
4、讨论交流:交流学生的举例是否符合要求,并交流算式的共同特点,你发现了什么?
5、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)()(运算顺序不同但结果相同)
(设计意图:找到两个式子之间的特点,是理解乘法分配律的关键。)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?
(a+b)×c=a×c+b×c
(5)等号左边(a+b)×c表示什么意思?等号右边a×c+b×c表示什么意思?这个等式从左到右成立,反过来从右到左呢?也是成立的。
四、探索发展,应用规律
(1)我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(80+4)×2534×72+34×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
(3)刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?
38×29+3843×102
(4)小结:如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。
(设计意图:特别注意引导学生找到式子中的运算方法与数字的不同。)
五、巩固练习,解决问题(我们刚才认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习。)
1、请大家根据运算定律在下面的_里填上适当的数。
(10+7)×6=______×6+______×6
8×(125+9)=8×______+8×______
7×48+7×52=______×(______+_______)
2、将得数相等的算式用线连起来。
3、饮料送货车给大成饮食店送去24箱苹果汁和26箱橘子汁。每箱都是24瓶,一共有多少瓶?每箱饮料36元,付1500元够吗?
六、全课小结
请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?请大家想一想,我们是怎样发现乘法分配律的呢?
今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。
篇十四:乘法分配律教学设计
一、教材依据
义务教育课程课程实验教科书(北师大版)小学数学四年级上册第三单元《乘法》探索与发现(三)乘法分配律(教材48、49页)
二、设计思想
“乘法分配律”的内容,被作为学生探究活动的题材,编排在《乘法》单元的“探索与发现”一节中,意在通过学生经历数学规律的探索过程,体验探索数学规律的基本步骤。根据教科书的编写意图,我在设计这节课时,力图在教学目标、教学方式及学生的'学习方式等几个方面有所创新、有所突破。
在在教学目标的确定上,主要是通过经历探索乘法分配律的活动,发现乘法分配律,希望通过数学活动,为学生提供充分探究的空间,使学生经历知识的形成过程,体现探究性学习的特征和要求。同时通过探究活动,引导学生用数学的思维方式、沿着“发现――猜想――验证――总结――应用”的轨迹去发现、去探索,经历探索数学规律的过程,达到启迪数学思想方法的目的。教学的重难点定位为引导学生在探索活动中发现、感悟、体验数学规律,进而学会应用规律。
三、教学目标:
1、经历探索的过程,培养学生观察、归纳、概括等初步的逻辑思维能力;
2、理解和掌握乘法分配律并会用字母表示;
3、能够运用乘法分配律进行简便计算;
4、使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。
四、教学重点:
引导学生运用数学思维方式探索乘法的分配律,归纳乘法分配律。
五、教学难点:
乘法分配律的应用,进行一些简便计算。
六、教学准备
多媒体教学课件
七、教学过程
(一)情境导入,发现问题
昨天,老师和两位小朋友去参观了正在装修中的学生食堂三楼多功能教室,善于观察的小朋友给我们带来了一道数学问题,你们能不能帮忙解决下?
课件出示:图片一共贴了多少块瓷砖?
(1)谁能估一估,贴了多少块瓷砖?
(2)谁来用自己的方法来验证估计是否正确?
还有不一样的方法吗?谁来说说看?(生口答,师板书)
板书:6×9+4×9(6+4)×9
=54+36=10×9
=90(块)=90(块)
(3)请同学们观察,看看有什么发现?(学生讨论,汇报)
(二)引导探究,发现规律
1、猜想、验证
(1)能不能利用你的发现举些例子来呢?
生:举例
(2)提出猜想:还有更多的算式吗?是不是所有的算式都具有这一规律呢?
(学生小组合作尝试,进行探索)
2、概括、归纳
(1)说说你们刚才验证的情况。
生1:我按照这个规律写出的两个算式是:7×5+3×5和(7+3)×5的得数都等于50。
生2:我按照这个规律写出的两个算式是:42×64+42×36和42×(64+36)的得数都等于250。
生3……
生4……
(2)看来这个规律是普遍存在的。其实我们发现的这个规律叫做乘法分配律。刚才我们举了很多这个规律的例子,这样的例子能列举完吗?
问:我们能不能用一个式(字母)把乘法分配律表示出来呢?
生:(a+b)×c=a×c+b×c
(3)等号表示什么意思?(这个等式反过来也成立)
(三)加强应用、深化理解
我们发现了乘法分配律,它又有怎样的应用呢?
(课件分步出示练习)
1、填一填(课本49面练一练第一题)
2、请同桌同学合用研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
(1)学生讨论研究;
(2)汇报计算方法,重点说为什么这样算;
(3)小结:通过研究,应用乘法分配律可以使一些计算简便。
(四)巩固练习、解决问题
(课件分步出示)
1、填一填
(10+7)×6=__×6+__×6
8×(125+9)=8×__+8×__7×48+7×52=__×(__+__)
2、同桌合作研究下面这些题目,怎样计算比较好?
(80+4)×2534×72+34×28
2、下面这些题,能用简便方法计算吗?怎样计算?
(20+4)×2532×(200+3)38×29+38×1
39×10138×29+3825×41
(五)课堂小结
1、说说今天我们研究了什么?
2、大家想一想,我们是怎样发现乘法分配律的呢?
3、乘法分配律有什么应用?
篇十五:乘法分配律教学设计
乘法分配律教学设计内容如下:
教材分析
本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的 思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计 算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析
学生具有很好的自主探究、团队合作、与人交流的习惯,在学习了乘法交换律和乘法结合律知识后,掌握了一些算式的规律,有了一些探究规律的方法和经验,只要教师注意指导、指点,就一定会获得很好的教学效果。
教学目标
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点
教学重点:理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律。
教学难点:乘法分配律的推理及应用。
教学过程
一、谈话交流,引入课题。
师:同学们,通过前两节课的学习,我们已经发现了一些数学规律,并能应用这些规律解决问题。这一节课我们继续探索,看看我们又会发现什么规律。今天又会有什么发现呢?让我们一起走上探索之路吧!
板书课题:乘法分配律。
设计意图:由前面学习的知识引入新课,继续学习、探索。
二、引导探究,发现规律。
1、教师用多媒体课件出示课本情境图。
师:你们看,工人叔叔正在工作呢,观察这幅图,你能发现哪些数学信息?
生:这是工人师傅为学校的厨房墙面贴的瓷砖,可以输出或算出有多少块瓷砖。
师:你真细心。大家能根据获得的信息提一个数学问题吗? 学生提问题,教师出示问题:一共贴了多少块瓷砖?
2、学生先估算:一共贴了多少块瓷砖?
师:谁能估计工人叔叔大约贴了多少块瓷砖? 学生试着估计。
3、学生汇报验算方法和结果。
师:同学们的估计是否正确呢?请你们用自己喜欢的方法计算一下瓷砖究竟有多少块。 学生用自己喜欢的方法计算,教师巡视。
师:谁来向大家介绍一下自己的算法?
生1:(3+5)×10 生2:3×10+5×10
=8×10 =30+50
=80(块) =80(块)
生3:(4+6)×8 生4:4×8+6×8
=10×8 =32+48
=80(块) =80(块)
4、师:同学们的计算方法都非常的好。请你仔细观察这四种算法,你发现了什么?
生:我发现计算方法不同,但结果却是一样的。
师:所以这两个式子我们可以用一个什么样的数学符号连接起来?
生:等于号。
教师板书:(3+5)×10=3×10+5×10;(4+6)×8=4×8+6×8
5、观察、讨论算式的特点。
师:这两个算式的左右两边有什么特点呢?两边的计算结果师怎样的?
生1:等号左边的算式是两个加数的和与一个数相乘的积,等号右边的算式是这两个加数分别与一个数相乘,再把所得的积相加。
生2:等号左边算式中的两个加数,就是等号右边算式中两个不同因数;等号左边算式中的一个因数,就是等号右边算式中两个相同的因数。
师:是这样吗?你们能再举一些类似的例子吗?
6、举例验证。
请同学们仔细观察上面算式的特点,能再列举一些类似的例子吗?
学生举例,教师板书。
如:(40+4)×25 和40×25+4×25; 63×64+63×36 和63×(64+36)
师:这几个同学举得例子符合要求吗?请在小组内验证。
讨论交流:(1)交流学生的举例是否符合要求: (2)交流不同算式的共同特点; (3)还有什么发现?(简便计算)
小组代表汇报。
7、教师小结。
师:两个数的和同一个数相乘,可以把这两个数分别同这个数相乘,再把两个积相加,结果不变,这叫做乘法分配律。
8、同桌之间互相说一说自己对乘法分配律的理解并字母表示。
师:我们已经学习了用字母来表示乘法交换律和结合律。如果用a、b、c 分别表示三个数,你能写出你的发现吗?
学生先独立完成,然后小组交流。
教师板书:(a+b)×c=a×c+b×c 并带读。
9、寻找简算原因:乘法结合律和交换律可以使计算简便,那么乘法分配律能否使计算简便呢?比较上面四个算式,看哪个算式计算简便,为什么?
设计意图:通过一道题目里两种不同的计算,让学生通过观察、类比、发现、概括、归纳,从而发现规律。让学生在活动中探索,在探索中收获,有效地培养学生各方面的能力。
10、请结合4×9+6×9这个算式说明乘法分配律是成立的。
学生讨论、交流,教师总结。
三、应用规律,解决问题。
“试一试”。
1、观察(80+4)×25的特点并计算。
(1)出示题目。
(2)指导学生观察算式的特点,看算式是否符合要求,能否应用乘法分配律进行简便运算。
(3) 鼓励学生独自计算。
2、观察34×72+34×28的特点并计算。
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求。
(3)简便计算过程,并得出结果。
四、巩固练习。
1、完成“练一练”第1题。
第(1)题:学生同桌之间讨论,教师指名学生汇报。
第(2)题:教师请两位学生上讲台计算,集体订正。
2、完成“练一练”第2题。
学生在小组内数以说,教师指名学生汇报,全班点评。
3、完成“练一练”第3题。
(1)限时一分钟完成计算,看谁算得又快有准。
(2)集体订正,让学生进一步体会可以用乘法分配律进行简便计算。
4、完成“练一练”第4题。
师:你能快速的算出算式26×21的结果吗?
引导学生知道,可以将21看成20+1,再利用乘法分配律进行计算,最后让学生自主计算58×11和47×102。
五、课堂小结。
师:这节课学习了什么?乘法分配律有什么特点?
师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一 条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。希望同学们要在理解的基础上牢牢记住 它。
板书设计
(3+5)×10 生2:3×10+5×10
=8×10 =30+50
=80(块) =80
(3+5)×10=3×10+5×10
乘法分配律用字母表示:(a+b)×c=a×c+b×c
教学反思
乘法分配律的教学是在学生学习了加法交换律、加法结合律及乘法交换律、乘法结合律的基础上设计的。对于乘法分配律的教学,我把重点放在让学生通过多种方法的计算去完整的感知,对所列竖式进行观察、比较和归纳,大胆提出自己的猜想并举例进行验证。以学生身边熟悉的情景为教学切入点,激发学生主动学习的需要,对于学生提出的问题,通过多种方法和算式的比较,使学生初步感知乘法分配律。为学生提供具有挑战性的研究机会,这样既培养了学生的猜想能力,又培养了学生主动探索、发现知识的能力。学生通过自主探索去发现、猜想、质疑、验证,主体地位得到了充分的发挥。对于这个规律,不是仅仅满足学生的理解、掌握,同时注重运用,帮助学生明白这个规律给我们带来计算上的方便,感受计算方法的灵活多样,培养学生灵活运用知识进行解决问题的能力,激发学生学习数学的兴趣。
[乘法分配律教学设计]
篇十六:乘法分配律教学设计
教学目标:
1、通过经历探索乘法分配律的活动,发现并理解乘法分配律。
2、通过观察、分析、比较,培养学生初步的分析、推理、抽象概括能力。
3、渗透“从特殊到一般”的数学思想和方法。
教学重点:指导探索乘法分配律。
教学难点:发现并归纳乘法分配律。
教 具: 课 件
教学过程:
一、创设情境,生成问题。
师:同学们,上节课我们研究了乘法的交换律和结合律,那乘法还有其他的运算律吗?希望今天通过我们的努力,能有新的发现。
出示问题一、一个长方形的长是72米,宽是28米,这个长方形的周长是多少?
师:你能用几种方法解答?
生1:(72+28)×2
生2:72×2+28×2(板书两个算式)
师:同学们给出了两种办法,那这个长方形的周长到底是多少呢?选择其中的一个算式计算一下。
生计算。
师:请选择第一个算式的同学,说出你的计算结果。
生:长方形的周长是200米。
师:谁选择的第二个算式,结果又是多少呢?
生:我算的结果也是200米。
师:通过大家的计算,这两个数算式的结果相同,我能不能在这两个算式之间写上“=”?
生:可以
板书:(72+28)×2=72×2+28×2
出示问题二:学校要换夏季校服了,上衣每件32元,裤子每件18元,四年级一班共64人,一共需要多少元?
师:这道题你有能用几种方法解答?结果是多少?
(生计算,汇报)
生1:我列的算式是32×64+18×64,结果是6400元。
师:有没有用不同的方法的?
生2:我列的算式是:(32+18)×64,结果也是6400元。
师:两种不同的方法,得出的结果却是相同,那这两个算式看来也是相等的。
板书:(32+18)×64=32×64+18×32
师:请同学们观察我们刚才得到的两个等式,你有怎样的感觉?
生:可能有规律。
师:真的有规律吗?
【评析:教师创设了求长方形的周长和学校买校服的情境,提出“你能用几种方法解答?学生很快地按要求用两种不同的方法列出算式,并且能够轻而易举地得出两式相等。在以上两个问题的解决中,让学生在经历了两种不同思考方法的计算后,便于学生发现新的知识规律。同时,产生这样一种数学体验,即乘法分配律的知识存在于实际问题的解决中。】
二、探索交流,归纳规律。
师:刚才同学们感觉到这两个等式中含有规律,下面把你的想法在小组内交流一下吧。
师:对于可能存在的规律,仅凭这两个等式就能说明它是成立的吗?
生:不能。
师:那该怎么办?
生:找更多的这样的等式。
师:既然找到了方法,那就请同学们,再找出一些这样的式子,验证它们的结果是否相等。
(生举例验证)
汇报:
生1:(3+2)×5=3×2+2×5
师:你计算过了吗?
生1:算了,两边的结果都是30.
师:很好,其他同学还有吗?
生2:(30+50)×5=30×5+50×5
生3:(24+76)×2=24×2+76×2
……
师:同学们都找到了这样的式子吗?
生:是。
师:看来同学们头脑中的那个规律可能真的存在。我们举了这么多的例子,两边的结果都是相等的,可是,万一除了咱们举得这些例子外有一个不能成立?那我们举得这么多例子也就失败了。我们能不能换个角度去看,我们不去计算,就能够判断两个式子的结果是否相同?
(生思考)
生:老师,我能。
师:你说说看。
生:比如(72+28)×2=72×2+28×2,左边括号里算出是100,就表示100个2,右边是72个2加上28个2,也是100个2,所以两边的结果一定是相等的。
师:同学们,你听明白了吗?
生:明白了。
师:那你能用这个思路说说你举得例子吗?
生1:我写的是(53+22)×4=53×4+22×4,左边是75个4,右边是53个4加上22个4,也是75个4
……
师:现在我们再来思考,有没有可能像这样的式子两边不相等?
生:不可能,两边的结果一定相等。
【评析:学生在已经初步得出规律的基础上,教师并没有急于让学生说出规律,而是继续为学生提供具有挑战性的研究机会:“请你再举出一些符合自己心中规律的等式”,继续让学生观察、思考、猜想,然后交流、分析、探讨,感悟到等式的特点,验证其内在的规律,从而概括出乘法分配律。这样既培养了学生的猜想能力,又培养了学生验证猜想的能力。学生通过自主探索去发现、猜想、质疑、感悟、调整、验证、完善,主体性得到了充分的发挥。】
篇十七:乘法分配律教学设计
教学资料
课题名称?乘法分配律?学科?数学?总课时?1
单元章节名称?第三单元运算定律和简便运算?页码?36?执教者?彭素娟
版本名称?人教版>?年级?四?册次?下册
教学分析
教材分析?乘法分配律的教学是继续由主题图引出的问题:“一共有多少名同学参加了这次植树活动”,透过让同学们分组讨论,自我探究及合作交流等方式,解决问题。再透过类比,让学生理解并概括出乘法分配律,初步体会使用乘法分配律,使计算相对简便一些。
教学目标?1?使学生理解和掌握乘法分配律并学会用字母表示。
2?培养学生分析?比较?抽象?概括的潜力。
3?培养学生自主探究,自主学习得出结论的学习意识。
教学重点?透过比较,对乘法分配律的归纳概括。
教学难点?对乘法分配律好处的理解。
教学准备
教具学具补充材料?导入投影片?主题图
教学流程(第1课时)
一?知识回顾
1?口答:说说什么是乘法交换律和乘法结合律?请用字母表示出来。
2?口算:40×23×25125×16
要求学生回答出结果,并口述在口算过程中,使用了什么运算定律?这样计算有什么好处?
二?类比感知
1?投影出示:
4×(5+8)8×(4+5)(7+6)×3
4×5+4×88×4+8×57×3+6×3
2?分组讨论:(1)上方各组算式的结果有什么特点?
(2)根据这个特点,每组中的两个算式能够怎样连接起来,用以表示它们的关系?
教师根据学生的回答,进行板书。
3?你能举出类似的例子吗?(学生自由回答)
【设计意图:透过让学生讨论举例,让学生初步体会出乘法分配律在形式上与前面学过的乘法的运算定律的不一样,对将要学习的乘法分配律先有个初步的认识】
三?质疑释疑,研究归纳
1?出示主题图,根据图中信息,让学生讨论,你想解决什么问题?
2?针对学生提出的问题,可根据状况给予解答。
3?提出例3的问题,进行分析和讨论。
4?学生独立列式解答。
5?群众交流不一样算法的解题思路。
方法一:(4+2)×25方法二:4×25+2×25
=6×25=100+50
=150(人)=150(人)
6?分析比较:观察两种算法有什么不一样?
7?建立表象:以上两种算法的结果怎样?(4+2)×25=4×25+2×25
8?你还能举出类似的例子吗?(教师可根据学生的回答作适当板书)
9?探究规律:
结合以上几个等式,让学生分组讨论:
(1)这些等式的左边是怎样的?右边呢?
(2)结果又怎样?
(3)从以上你发现了什么规律?
如果学生在语言表述上有困难,教师可给予适当的提示。
(4)你能再举出乘法分配律的例子吗?
(5)能用字母表示吗?
(6)抢答:a(b+c)=?
(7)归纳乘法分配律并板书课题:乘法分配律
四?知识巩固
1?在里填上适当的数。
(23+25)×4=×4+×4
18×(31+16)=18×+18×
(25+26)×a=×+×
53×a+47×a=+×a
48×a+×b=×(a+b)
25×36+25×64=25×+
2?连线
(25+24)×5(25+75)×16
25×16+16×75a×b+a×c
a×(b+c)a×c+b×c
(a+b)×c25×5+24×5
五?课堂总结
这天我们学习了什么知识?它与乘法的交换律和结合律有什么不一样?
六?知识拓展
你会算吗?
111×999999×222+333×334
【设计意图:放手让学生探究,透过学生自主学习,培养他们的成就感,激发他们的学习兴趣】
七?作业:教材38页6?7。
板书设计
乘法分配律
乘法交换律:a×b=b×a乘法分配律:(a+b)×c=a×c+b×c
乘法结合律:(a×b)×c=a×(b×c)(4+2)×25=4×25+2×25
=6×25=100+50
=150(人)=150(人)
学生举例;……
……
……
篇十八:乘法分配律教学设计
乘法分配律的教学设计
一、指导思想与理论依据:
《课程标准》指出:“要充分带给搞笑的、与儿童生活背景有关的素材,题材宜多样化,呈现方式也应丰富多彩。”本节课从学生的生活经验出发,设计了对同一句话、“爸爸和妈妈都爱我”不一样形式的的简洁描述,让学生在真实的情境中认识乘法分配律感受到数学知识的真实,数学知识就在自我的身边,有助于培养学生用数学的思维方法观察周围事物,思考问题的良好习惯。本节课,在整个探究发现乘法分配律的过程中,我没有把知识规律直接展示给学生,而是让学生用心地动手实践、自主探索及与同伴进行交流,亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅仅发现乘法分配律的知识,而且学习科学探究的方法,数学思维的潜力得到了发展。
二、教学背景分析:
学生状况:本节课,是在学生掌握乘法交换律、乘法结合律的基础上进行的。乘法分配律和交换律、结合律相比,其结构特点是生疏的,学生理解掌握起来比较困难,因此,我们要采用多样化的教学方式及策略,巧设认知冲突,激发学生强烈的问题意识和求知欲,引导学生在情境中借助已有知识去获取新知,使学生在感知、猜想、验证、得出结论的丰富学程中,获得深刻感受,生成新的经验。丰富的感性材料、深入的体验与感悟,用心的探究与思考,才能激起创造的火花,使规律的概括总结水到渠成。
教学资料分析:乘法分配律不是单一的乘法运算,还涉及到加法运算,为此在理论算术中又称之为乘法对加法的分配性质。乘法分配律是学生进行简算的重要依据,能够使两位数和三位数乘法的计算方法更清楚,解决实际问题的思路更简洁。乘法运算定律的归纳、总结和运用对学生来说是一种潜力的提高,它区别于一般计算的学习,这一部分资料的思考性比较强,需要学生有更强的观察潜力和思维潜力与之相配合,所以学习的困难会比较大。因此,教学的重点、难点是引导学生抽象概括出乘法分配律,初步理解和掌握其结构特征,并能灵活运用。
教学方式、手段与技术:变重视结论的记忆为重视学生获取结论时的体验和感悟;变模仿式的学习为探究式的学习。贯彻转变学生学习方式的新理念,运用小组合作交流的方式,教师时而参与学生的探究时而对学生的活动进行引导和点拨,既有学生之间、小组之间的交流,也有师生之间的交流,教师是数学学习的组织者、引导着、合作者。运用信息技术,为学生带给现实的、搞笑的、富有挑战性的学习资料,能够在视听领域里展示事物的发展变化过程,让学生亲身体验,不但有助于获取数学知识,更重要的是学生在体验中能够逐步掌握数学学习的一般规律和方法。
三、本课教学目标设计:
知识目标:透过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。
潜力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。
培养学生观察、比较、抽象、概括等潜力。
培养学生的数感和符号感。
情感目标:让孩子们自我生成“用符号记录整理的方法”,体验学习的快乐。
教学重点:引导学生透过观察、比较、抽象、概括出乘法分配律。
教学难点:应用乘法分配律解决实际问题。
四、教学过程及教学资源设计:
(一)生活引入,感知规律
1。在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。
2。爸爸和妈妈都对我们那么好,我们能够自豪的说“爸爸和妈妈都爱我”。
3。爸爸和妈妈都爱我,这句话还能够怎样说?
4。我听说张磊和杨军都是李新建的好朋友,这句话还能够怎样说?
5。小结:同样一句话能够有不一样的说法。生活中的这种现象在我们数学中是怎样的呢,这天我们就一齐来探索数学中的规律。
[策略]把数学知识依附于常见的现实生活问题中,引领学生发展自身灵性,寻求数学知识与现实问题间的本质联系,进而合理处理相关信息,结合鲜活的数学材料,触动学生的道德碰撞,给原本单一冷漠的资料注入人文的血液,促进学生感悟、内化。
(二)开放探究,建构规律
1。情境引入
讲本学期开学,学校要为一、二、三年级更换桌椅状况:
(课件播放),提出问题,引发学生思考:
(1)请仔细观察大屏幕:
学校为一年级更换3套桌椅共需要多少钱?
学校为二年级更换5套桌椅共需要多少钱?
学校为三年级更换6套桌椅共需要多少钱?
(2)请同桌两个同学选一个问题在练习纸上用两种方法解答?
(3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。
(4)谁愿意之后汇报?
2。第一次发现
(1)仔细观察这三组算式,你能发现什么吗?能够与同桌讨论讨论。
小结:每一组算式的结果相等。
(2)我把这两个算式用等号来连接,行吗?为什么?
板书:(50+60)×3=50×3+60×3
(75+68)×5=75×5+68×5
(80+65)×6=80×6+65×6
3。第二次发现
(1)再观察这三组算式,还有什么发现吗?
(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?
(3)每人举出一个例子,写在纸上,然后请同桌帮忙验证
汇报交流:像这样的例子还能举出一些吗?举的完吗?
4。归纳总结:
(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?
(2)请看大屏幕,你们的意思是这样吗?小声读读。
(3)有什么不懂的词吗?
5。个性化理解
(1)你能用比较喜欢的形式来表达上方的这些等式吗?比如用字母,图形等。
根据学生回答教师板书:
(□+○)×☆=□×☆+○×☆
(甲+乙)×丙=甲×丙+乙×丙
(a+b)×c=a×c+b×c
(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)
(3)对于乘法分配律用字母表示感觉怎样样?
[策略]针对众多的数学事实,不急于引导学生发现规律,而是让学生运用朴素的语言概括出这些等式的共同特点,这些特点既是“乘法分配律”知识的雏形,更是学生建构知识的渐进台阶。在此基础上引出规律,水到渠成。尤其是,让学生用个性化的方式表示自我对乘法分配律的理解,更是有效的促进了学生对规律好处的个性化感悟。
(三)激活联系、应用规律。
1。请你把相等的两个算式连线。
(8+13)×441×(3+27)
3×(21+6)7×5+8
41×3+41×273×21+3×6
7×(5+8)8×4+13×4
(1)你为什么连得这么快?是计算了吗?
(2)这两个算式之间为什么不连了?能用乘法分配律的资料来解释吗?
2。根据乘法分配律填空:
(83+17)×3=□×□○□×□
10×25+4×25=(□○□)×□
(1)谁愿意展示一下你填写的。有不一样意见吗?
(2)分别说说转化以后的算式和原先的算式比,哪一个让我们计算起来感觉比较简便了?为什么?
(3)小结:学习了乘法分配律能够灵活选取算法,怎样计算简便就怎样算。
[策略]多种练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓宽知识视野、完善认知结构、提升认识境界、增长人生智慧的过程。
3。联系旧知、同已有知识建立联系。
谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。
此刻我们每一天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?
[策略]引导学生联想知识用途,勾起了学生对已有知识的回忆,凭借亲自计算得到的感悟领会到乘法分配律的广泛运用。
(四)课堂小结:
这天,学习了乘法分配律,你有什么想法?
(五)板书设计:
乘法分配律
(50+60)×3=50×3+60×3
(75+68)×5=75×5+68×5
(80+65)×6=80×6+65×6
……
(a+b)×c=a×c+b×c
篇十九:乘法分配律教学设计
教材简析:
能应用乘法分配律进行简便计算的式题主要有两种情况:一种是一个数乘两个数的和(或可以转化成一个数乘两个数的和),可以直接应用乘法分配律算出结果;另一种是求两积之和的算式里有一个乘数相同,可以逆向应用乘法分配律算出结果。
教学目标:
1、让学生掌握能用乘法分配律进行简便运算的式题的特点,学会应用乘法分配律进行简便计算。
2、让学生学习应用估算的方法判断计算结果的合理性。
3、让学生联系现实问题主动运用规律解决问题,感受数学规律的普遍使用性,进一步体会数学与生活的联系,获得运用数学规律提高计算效率的愉悦感和成功感,增加学习的兴趣和自信。
教学过程:
一、讲解学生作业错得较多的题目
1、99×37+37=37×(□○□)
指名说说这题是如何思考的:乘法分配律其实就是合起来乘可变成分别乘或是分别乘变成合起来乘。在这个算式中,只有一个乘,那就要把后面的“37”改装成乘“37×1”,然后就可以看出是在分别乘37,应该等于合起来乘37,括号里应该填写的是“99+1”
2、把左右两边相等的算式用线连起来
11×58+49×1112×77+8×77
(12+8)×77 36×25+4×25
(58+12)×1427×21+27×29
27×(21+29)11×(58+49)
(36×4)×2558×14+12
先让学生说说哪几组是肯定能连线的,还有哪几组有问题?说说为什么不能连线?
(1)(58+12)×14应该等于分别乘14,但“58×14+12”中的12没有乘14,所以是不相等的。
(2)(36×4)×25,乘法分配律要有乘有加,这里只有乘,不符合乘法分配律的特点,它只能用乘法结合律进行简便计算。所以不能和36×25+4×25连线。
二、学习例题
1、出示例题图
说说例题的信息和问题,说说相关的数量关系式。
2、列式并估算等:32×102≈3200(元)
说说估算的方法:把102看成100,32乘100等于3200,32×102的积应该略大于3200。
还可以怎么算?(用竖式算)
3、3200元其实是几件衣服的价钱?那要算102件,还要怎么办?
(加上2件),这2件是多少元呢?总共是多少元?
怎么把这个过程完整地用算式表达出来呢?
板书:32×102
=32×(100+2)
=32×100+32×2
=3200+64
=3264(元)
指出:利用乘法分配律,我们可以把这类题目进行简便计算。
学生完成书上的例题剩下部分。
4、完成试一试:用简便方法计算46×12+54×12
观察算式特点,并完成简便计算。交流:=(46+54)×12
=100×12
=1200
比较两题,说说在利用乘法分配律进行简便计算的时候有什么要注意的?
(有的时候是合起来乘容易,有的时候是分别乘更容易。要根据具体的题目来选择。)
三、完成想想做做
1、在□里填上合适的数,在○里填上运算符号(题略)
学生独立完成,再校对。
2、口算下面各题,并说说是怎样应用乘法分配律的(第3题)
学生说出口算的过程,体会也是运用了乘法分配律。
3、读第5、6题,观察数据的特点,说说怎么算才更简便?
四、探索思考题
99×99+199○100×100
观察算式,说说它们之间有怎样的大小关系呢?说说是怎么想到的?
在交流过程中完成板书
99×99+199
=99×99+99×1+100
=99×(99+1)+100
=99×100+100×1
=100×(99+1)
=100×100
学生自己尝试完成算式:999×999+1999的探索过程
发现规律,直接完成算式:9999×9999+19999=()×()
五、布置作业
p.57第2、4、5、6题
篇二十:乘法分配律教学设计
教学目标:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。
2、经历共同探索的过程,培养解决实际问题和数学交流的.能力。
3、会用乘法分配律进行一些简便计算。
重点难点:
1、指导探索乘法分配律。
2、发现并归纳乘法分配律。
方法指导:
通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。
教学过程:
一、激趣导入
(约3分钟)
创设情境,提出问题
1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?
2、学生思考:
(1)有几种搭配方案
(2)选择你喜欢的一种方案,并算出总价。
(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)
二、自主学习
(约7分钟)
(一)组内研讨,确定方案
1、组内研讨
(1)一共有几种搭配方案?
(2)介绍自己的方案,并说一说,你推荐的理由。
(3)说说你推荐的方案,需要花多少钱?你是怎么算的?
合作交流
(约10分钟)
2、汇报交流
师:哪一个同学想先来给老师推荐他的方案?
师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?
分别列式解答
师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)
师:这个等式怎么读呢?
生尝试读等式。
(预设学生读法:
A.225加上75的和乘4等于乘225乘4加75乘4
B.225加上75的和乘4等于225和75分别与4相乘的积再相加。)
3、研究其它方案
由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。
教师板书
一套×4=4件上衣+4条裤子
(225+75)×4=225×4+75×4
(225+125)×4=225×4+125×4
(175+75)×4=175×4+75×4
(175+125)×4=175×4+125×4
精讲点拨
(约8分钟)
(二)观察比较、猜测验证
1、观察比较
2、提出猜想。
师:观察上面的等式,左右两边的算式什么变了什么没变?
你们有什么发现?
3、举例验证。
让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?
学生汇报,教师根据汇报板书。
(三)总结规律,概括模型
1、总结规律
师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)
师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?
2、用字母表示
师:用字母如何表示乘法分配律?
三、测评总结(约12分钟)
巩固应用,训练提升
1、请你根据乘法分配律填空
(12+40)×3=()×3+()×3
15×(40+8)=15×()+15×()
78×20+22×20=(+)×20
66×28+66×32+66×40=(++)×40
教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。
2、火眼金睛辨对错
56×(19+28)=56×19+56×28
(18+15)×26=18×15+26×15
(11×25)×4=11×4+25×4
(45-5)×14=45×14-5×14
强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。
3、用乘法分配律计算下面各题。
(40+4)×2539×8+39×6-4×39
4、拓展提高
你能用乘法分配律解决这道题吗?
86×101
四、课堂小结
说一说,今天我们研究了什么?你有什么收获
板书设计:
乘法分配律
一套×4=4件上衣+4条裤子
(225+75)×4=225×4+75×4
(225+125)×4=225×4+125×4
(175+75)×4=175×4+75×4
(175+125)×4=175×4+125×4
乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。
篇二十一:乘法分配律教学设计
教学内容:
北师大版四年级上册第四单元《乘法分配律》
教材分析:
本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析:
学生具有很好的自主探究、团队合作、与人交流的习惯,在学习了乘法交换律和乘法结合律知识后,掌握了一些算式的规律,有了一些探究规律的方法和经验,只要教师注意指导和点拨,就一定会获得很好的教学效果。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点:
教学重点:理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律。
教学难点:乘法分配律的推理及应用。
教学过程:
一、复习引入,质疑猜想
1、出示口算题:
师:前段时间,我们发现了四则运算中的加法交换律、乘法交换律、加法结合律和乘法结合律,我们知道利用这些运算定律可以使一些计算更简便。下面各题看谁算得又对又快。
358+25+75 ? ? ? ? ?72+493+28 ? ? ? ? ?25×19×4
12×125×8 ? ? ? ? ?168×5×2 ? ? ? ? ? 14×2=
交流:你是怎样想的?
2、分组计算比赛
师:下面我们再来一场分组计算比赛,好不好?
出示:脱式计算
第二组题目:45×12+55×12 ? ? ? 34 ×72+34×28
第一、三组:(45+55)×12 ? ? ? ?(72+28)×34
师:你们觉得这场比赛公平吗?仔细观察两组算式,大家有什么发现?两个算式的结果是相等的,结果为什么相等呢?接下来,我们一起去进一步探究。
二、探究新知,验证猜想
1、出示:用两种方法计算这两个长方形中一共有多少个小方格?
8×4+5×4
(8+5)×4
思考:为什么两个算式的结果相同呢?
左边算式表示8个4加5个4,(一共13个4),右边也是求13个4,所以结果相等。
2、出示:淘气打一份稿件,平均每分钟打字178个,他先打了6分钟,后又打了4分钟完成这份稿件。
(1)请提一个数学问题(淘气一共打了多少个字?)
(2)用两种方法解答问题
(3)思考:为什么两次计算的结果相同呢?
3、师:仔细观察,像上面这样的等式,你能再列出一组吗?在自己练习本上列一列,算一算,验证一下。这样的等式列得完吗?用a、b、c代表三个数,你能写出上面发现的规律吗?(a+b)×c=a×c+b×c ? 大家发现的这个规律其实就是乘法分配律(板书课题)。
能用自己的话说说什么叫乘法分配律吗?(两个加数的和与一个数相乘就等于把两个加数分别与这个数相乘,然后把乘积相加)
想一想:这里的分配,表示什么意思?(表示分别配对的意思。)
师:这道等式反过来写,依然成立吗?
三、巩固新知,应用定律
1、填一填:
4×(25+8)=__×___+___×__
38×37+62×37=___×(___+___)
502×19+11×502=___×(___+___)
48×99+48×1=___×(___+___)
a×b+a×c=___×(___+___)
2、判断对错:
8×(125+9)=8×125+9 ? ? ? ? ? ? ? ?( ? ?)
27×8+73×8=27+73×8 ? ? ? ? ? ? ? ? ( ? ?)
(12+6)×5=(12×5)×(6×5) ? ? ?( ? ?)
(25+9)×4=25×4+9×4 ? ? ? ? ? ? ? ( ? ?)
3、试一试
(1)观察(40+4)×25的特点并计算
(2)观察34 ×72+34×28的特点并计算
4、分组计算比赛
85×16+15×16 ? ? ? ? (40+8)×25
68 ×128-68×28 ? ? ? ?34×(100+20)
四、总结全课
今天,我们又发现了什么?
五、课外思考
其实,乘法分配律我们并不陌生,大家想一想,以前在什么时候我们用过乘法分配律?
板书设计:
乘法分配律
(a+b)×c=a×c+b×c
a×c+b×c =(a+b)×c
(10+4)×2=10×2+4×2
(45+55)×12 =45×12+55×12 ? ? ? ? ? ? ? (40+4)×25
(72+28)×34=34 ×72+34×28
(8+5)×4=(8+5)×4 ? ? ? ? ? ? ? ? ? ? ? 34×72+34×28
(6+4)×178=6 ×178+4×178
篇二十二:乘法分配律教学设计
乘法分配律教学设计
教学目的:使学生学会应用乘法分配律进行简便计算,提高学生的逻辑思维能力。
教具准备:将复习中的题目写在小黑板上。
教学过程:
一、复习
教师出示式题:
1.(35+65)×37 2.35×37+65×37
3.85×(174+26) 4.85×174+85×26
5.(80+8)×25 6.80×25+8×25
7.32×(200+3) 8.32×300+32×3
“根据乘法分配律,都有哪些算式可以用等号连接起来?为什么?”
教师:根据乘法分配律,第1个算式和第2个算式的得数应该一样,第3个算式和第4个算式的得数也应该一样。下面大家一起来计算。第1组、3组的同学算第1题和第3题,第2、4组的同学算第2题和第4题。大家抓紧时间做,比一比看哪几个组的同学算得快。
“哪几组的同学做得快?想一想,为什么第l、3组的大部分同学都那么快就算出了得数?”多让几个学生说一说。
教师:第1题和第3题中,两个数的和都是整百数;整百数乘以一个数当然是很方便的。而第2题和第4题都要先算出两个乘积再相加,比较麻烦。
教师:下面还有两组等式,大家再来计算一下,第1、3组做第5、7题,第2、4组做第6、8题。
“这次哪几组的同学做得快?想一想,这次为什么第2、4组的大部分同学都做得快了?”
教师:第6题和第8题分别乘得的两个积,都有整百数,计算比较方便。从上面的计算可以看出,应用乘法分配律可以使一些计算简便。
二、新课
1.教学例6。
(1)教师出示例题,计算9×37+9×63。
教师:这道题是要计算两个乘积的和。
“仔细看一看这道题里的`两个乘法计算中的因数有什么特点?”
(两个乘法计算有相同的因数9,另外两个因数是37和63,它们的和正好是100)
“联系上面的复习题,想一想这道题怎样做才能使计算简便呢?”(先把37和63加起来,是100,再同9相乘,得900。)
“这是应用了什么运算定律?”
教师:这道道告诉我们,有些题可以应用乘法分配律使计算简便。再来看一看怎样的计算才能应用乘法分配律使计算简便呢?先让学生说一说。
教师概括:首先要计算的是是两个乘积的和;两个乘法计算要有一个相同的因数,另外两个因数的和又是整百或是整十数,这样的计算我们就可以应用乘法分配律使计算简便。
(2)教师出示例题:102×43。
教师:这道题是一个三位数乘以一个两位数,我们可以用笔算进行计算,但是比较麻烦。
“想一想,这道题怎样计算比较简便,使我们能够用口算就能算出得数呢?”(给学生留出思考时间。)
教师:从上面的复习题我们可以看出,如果两个加数分别要乘以一个数,而这两个加数中有一个整十数或整百数,就先把这两个加数分别乘以那个因数再相加比较简便,现在的题目是102乘以43,想一想:能不能把其中一个因数拆成两个数的和,并且使其中一个加数是整百、整十数?多让几个学生发言。教师肯定学生的回答后,
板书:102×43
=(100+2)×43
=100×43+2×43
=4386
上面计算中的第二步根据是什么?”(乘法分配律。)
教师概括:两个数相乘,如果其中一个因数可以拆成两个数的和,并且其中一个加数是整百、整十数,这时应用乘法分配律可以使计算简便;
三、课堂练习
做练习十四的题目。
1.第3题,让学生口算。
2.第4题,先让学生自己计算。核对时让学生回答一“如果按运算顺序计算,应该先算什么?”“怎样计算简便?根据是什么?”
3.第7题,先让学生独立做,然后集体核对,核对时要让学生说一说是怎样做的。
4.第9题和第10题。先让学生独立做,核对时要让学生说出每个算式的意义。
5.提前做完的学生做第19题。
篇二十三:乘法分配律教学设计
教学目标
知识与技能:引导学生探究和理解乘法分配律。
过程与方法:感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
教学重点:乘法分配律的意义和应用。
教学难点:乘法分配律的反应用。
教具学具:多媒体课件
教学过程
一、复习引入
前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。
什么是乘法的交换律和结合律?
今天这节课我们再来学习乘法的另一个运算定律。
二、新课探究
出示主题图:还记得我们提出的第三个问题吗?
参加植树的一共有多少人?
1、你怎样解决这个问题?列式计算
2、汇报:
第一种算法:先算每个小组里有多少人?
(4+2)×25
=6×25
=150(人)
第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。
4×25+2×25
=100+50
=150(人)
3、观察这两个算是有什么特点?
4、讨论,你得到什么结论?
5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。
6、小结:这个规律就是乘法分配律。
7、用字母怎样表示这个规律?
三、巩固练习
1、P27做一做
2、拓展:乘法分配律是否也适用于减法?
验证:18x5-5x8(18-8)x5
265×105-265×5265×(105-5)
篇二十四:乘法分配律教学设计
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点:
教学重点:理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律。
教学难点:乘法分配律的推理及应用。
教学过程:
一、复习引入,质疑猜想
1、出示口算题:
师:前段时间,我们发现了四则运算中的加法交换律、乘法交换律、加法结合律和乘法结合律,我们知道利用这些运算定律可以使一些计算更简便。下面各题看谁算得又对又快。
358+25+7572+493+2825×19×4
12×125×8168×5×214×2=
交流:你是怎样想的?
2、分组计算比赛
师:下面我们再来一场分组计算比赛,好不好?
出示:脱式计算
第二组题目:45×12+55×1234×72+34×28
第一、三组:(45+55)×12(72+28)×34
师:你们觉得这场比赛公平吗?仔细观察两组算式,大家有什么发现?两个算式的结果是相等的,结果为什么相等呢?接下来,我们一起去进一步探究。
二、探究新知,验证猜想
1、出示:用两种方法计算这两个长方形中一共有多少个小方格?
8×4+5×4(8+5)×4
思考:为什么两个算式的结果相同呢?
左边算式表示8个4加5个4,(一共13个4),右边也是求13个4,所以结果相等。
2、出示:淘气打一份稿件,平均每分钟打字178个,他先打了6分钟,后又打了4分钟完成这份稿件。
(1)请提一个数学问题(淘气一共打了多少个字?)
(2)用两种方法解答问题
(3)思考:为什么两次计算的结果相同呢?
3、师:仔细观察,像上面这样的等式,你能再列出一组吗?在自己练习本上列一列,算一算,验证一下。这样的等式列得完吗?用a、b、c代表三个数,你能写出上面发现的规律吗?(a+b)×c=a×c+b×c大家发现的这个规律其实就是乘法分配律(板书课题)。
能用自己的话说说什么叫乘法分配律吗?(两个加数的和与一个数相乘就等于把两个加数分别与这个数相乘,然后把乘积相加)
想一想:这里的分配,表示什么意思?(表示分别配对的意思。)
师:这道等式反过来写,依然成立吗?
三、巩固新知,应用定律
1、填一填:
4×(25+8)=__×___+___×__
38×37+62×37=___×(___+___)
502×19+11×502=___×(___+___)
48×99+48×1=___×(___+___)
a×b+a×c=___×(___+___)
2、判断对错:
8×(125+9)=8×125+9()
27×8+73×8=27+73×8()
(12+6)×5=(12×5)×(6×5)()
(25+9)×4=25×4+9×4()
3、试一试
(1)观察(40+4)×25的特点并计算
(2)观察34×72+34×28的特点并计算
4、分组计算比赛
85×16+15×16(40+8)×25
68×128-68×2834×(100+20)
四、总结全课
今天,我们又发现了什么?
五、课外思考
其实,乘法分配律我们并不陌生,大家想一想,以前在什么时候我们用过乘法分配律?
篇二十五:乘法分配律教学设计
教学目标
(一)使学生学会用乘法分配律进行简算,提高计算能力.
(二)培养学生灵活运用乘法运算定律进行计算的`习惯.
教学重点和难点
能比较熟练地应用运算定律进行简算是教学的重点;反向应用乘法分配律是学习的难点. 教学过程设计
(一)复习准备
1.口算:
(二)学习新课
我们已经学过乘法分配律,今天继续研究怎样应用乘法分配律使计算简便.(板书:乘法分配律的应用)
1.创设情境,激发学生学习积极性.
出示102×( ).
请同学任意填上一个两位数,老师可以迅速说出它的得数,而不用笔算.
2.教学例6:用简便方法计算.
(1)计算102×43.
这是一道两位数乘三位数的乘法,用笔算比较麻烦.想一想,能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
经过讨论后,可能出现两种情况:一种是把原式改写为(100+2)×43,然后按乘法分配律进行计算;一种是把原式改写成102×(40+3).不要简单的否定,可以让学生用两种方法都做一做,对比一下,找出哪种方法简便.
在此基础上引导学生观察这类题目的特点,以及怎样应用乘法分配律,从而使学生明确:“两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
(2)计算102×24.
订正时说明怎样简算的?根据是什么.
(3)计算9×37+9×63.
启发提问:
①这类题目的结构形式是怎样的?有什么特点?
②根据乘法分配律,可以把原式改写成什么形式?这样算为什么简便?
在学生充分讨论的基础上,师板书:
提问:这题能简算吗?什么地方错了?应怎样改?
启发学生明确:题里两个乘式没有相同的因数.应该有一个相同的因数,另外两个因数加起来应是能凑成整十、整百、整千的数.
2.根据乘法分配律把相等的式子用“=”连接起来.
讨论:2,3两题为什么不相等?要使等号两边式子相等、符合乘法分配律的形式,应该改哪个地方?
在讨论基础上得出:
第2题,如果左边算式不变,右边算式应改为35×12+45×12,使两个加数分别与同一个数相乘;如果右边算式不变,两个积里有相同的因数45,把相同的因数提到括号外面,两个不同的因数就是两个加数,改为(35+12)×45.
第3题右边两个积里相同的因数是4,不同的因数是11和25,应改为(11+25)×4.因此要特别注意:括号里的每一个加数都要同括号外面的数相乘;反过来,必须是两个积里有相同的因数,才能把相同的因数提到括号外面.而三个数连乘则是可以改变运算顺序,它是乘法结合律.必须要掌握这两个运算定律的区别.
(四)作业
练习十四第5~10题.
教学反思:本节课从学生实际出发,创设了具体的生活情境,引导学生开展观察、猜想、举例验证、交流等活动,从激活学生已有的知识经验和探究欲望入手,引导学生主动参与数学的学习过程,从而发展学生数学思维数学能力,在学习过程中学会学习,学会与人交流合作。新理念还体现不够,学生的积极性没有充分调动起来。
篇二十六:乘法分配律教学设计
教学目标:
1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力,《乘法分配律》教学设计。
2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。
3、能够运用乘法的分配律进行简便计算。
重点、难点:
重点:学生参与推导乘法分配律的过程。
难点:乘法分配律的推理及运用。
教学过程:
一、比赛激趣,提出猜想.
(1)同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做A组的题,右边的两组做B组的题,看谁做的又对又快,开始)
9×( 37+63) 9×37 + 9×63
(2)评出胜负。(做完的同学请举手,汇报计算过程。可以看出左边的同学做得比较快,(问同学)你们有什么意见吗?)刚才的计算中你发现这两道题有什么关系吗?
教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。
引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:9×( 37+63) =9×37 + 9×63
(3)将学生的发现以他(她)的名字命名为“**猜想”。
【设计意图:在课的开始,组织数学热身赛能调动学生的学习积极性。】
二、引导探究,发现规律。
1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)昨天,老师去超市里买东西,看到下面这些物品。橙子每箱28元,苹果每箱22元。如果橙子和苹果各买3箱,一共需要多少钱?
(1)全班同学独立完成。
(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)
还有不一样的方法吗?谁来说说看?(生回答,师板书)
算式(28+22)×3 和28×3+22×3的每一步各表示什么?谁能说给大家听听?
(3)观察这两个算式,你有什么发现?
引导学生比较两个算式异同点,并指名学生说一说自己
生:这两个算式的得数是一样的。
师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。
生:等于号
师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,所以( 35+25)×3=35× 3+25×3
师:再和前面的一组式子一起观察,
9×( 37+63)=9×37 + 9×63
(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)
2、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)
(1)验证方法:要求每人出两组算式,数字随意举例,可以使用计算器进行计算,验证你举的例子是否相等,教案《《乘法分配律》教学设计》。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)
(2)学生回报:谁来说一说自己举的例子。
(3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)
(4)轻声读这些等式,你发现了什么?
3、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)从刚才的举例过程中,你能发现乘法运算中的规律吗?
学生回报。
(电脑出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)
同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)
(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?
结合学生回答,教师板书:(a+b)×c=a×c+b×c
齐声读两遍。
(4)对于乘法分配律,用字母来表示,感觉怎样。
引导学生发现:字母表示的式子简洁、明了,这就体现了数学的美。
三、加强应用、深化理解
1、瞻前顾后填一填。
(10+7)×6=□×6 + □× 6
8×(125+9)=8×□+ 8×□
7×48+7×52=□×(□ + □)
2、火眼金睛看一看:
判断下面算式是否正确?并说明理由?
56×(19+28)= 56×19+28 ( )
32×(7×3)= 32×7+32×3 ( )
25×12+12×75 = 12×(25+75) ( )
25×99+25 =(99+1)×25 ( )
3、利用乘法分配律,计算下列各题。 ( 80 + 4 ) ×25 34 ×72 + 34 ×28 师小结:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。
4、找朋友
(10+6)×4 10 ×4+6 10 ×4+ 6 × 4
5 ×(7+9) 5 ×7+ 5× 9 5 ×7× 9
3 ×25+7 ×25 3+7×25 (3+7)×25
5、对口令
师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。
6、脑筋急转弯。
猜一猜,等号后边是三个什么字?
木×(1+3+2)=?
四、总结:
1、回忆一下,这节课你学会了什么?
2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?同学们课后交流一下,下节数学课我们再继续研究。
篇二十七:乘法分配律教学设计
教学目标
1.使学生理解乘法分配律的意义.
2.掌握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用
教学难点:乘法分配律的反应用.
教具:教学课件一套
教学过程:
一、比赛激趣,提出猜想
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)
7×28+7×72
7×(28+72)
(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
7×28+7×72=7×(28+72)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
二、引导探究,发现规律。
1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。
2、商场 “五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)
(1)看到这幅图画,你了解到了什么信息?你想提什么问题?
(2)你能用两种方法列出综合算式吗?
(3)学生独立列式,教师巡视
(4)交流反馈:你是怎么想的,怎样列式计算
板书:65×5+45×5 (65+45)×5
(5)观察这两个算式,你有什么发现?
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?
4、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)
(4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
(5)大屏幕出示关于乘法分配律的总结,学生齐读。
三、探索发展,应用规律
(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)
(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(8+4)× 25 34 ×72+34 ×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
四 、巩固内化
1、 做“想想做做”第1题
学生独立填写,指名报,全班共同校对。
明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?
2、 做“想想做做”第2题
学生自己判断。然后请生说说判断的依据。
3、 做“想想做做”第3题
让每位学生都用两种方法计算长方形的周长,指名板演。
明确:这两种算法有什么联系?符合什么规律?
小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。
4、 做“想想做做”第4题
让学生各自按运算顺序计算,指定两人板演,共同订正。
提问:每组两道算式有什么联系?哪一题的计算比较简便?
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
五、 总结回顾
篇二十八:乘法分配律优秀教学设计
乘法分配律优秀教学设计
第六课时:乘法分配律
【学习目标】
学会用乘法分配律进行简便计算,并能用字母表示这一规律。
【学习过程】
一、板题示标
师:同学们,今天我们来学习乘法分配律(板书课题),那么这节课我们的学习目标是什么呢?请看:(投影出示学习目标);要达到这个目标,靠大家自学,你们有信心吗?老师相信:你们是最棒的! 请看自学指导。
二、自学指导(投影出示):
打开书26页例7,根据例7的问题在主题图中寻找信息。重点看黄色边框内的.内容。
1、认真观察比较两种方法,计算结果相同,这两个算式之间有什么关系?
2、这种关系运用了什么定律?用文字和字母分别怎么表示?
(6分钟后比一比谁检测题做的最好。)
师:自学的时候,比一比,看谁看书最认真,坐姿最端正。下面,自学竞赛开始
三、先学:
(一)、看一看
学生认真看书,教师巡视,督促每个学生都在认真看书。
(二)、做一做
1、完成教材中第26页的“做一做”。三名学生板演,其余学生做在书上。
2、教师进行巡视了解情况,发现错例,进行二次备课。
四、后教
(一)、更正
让学生观察黑板上的题发现错误的可用不同颜色的粉笔纠正。
(二)、讨论
1、观察第一道题,你认为做对的请举手,为什么?
2、观察第二道题,你认为做对的请举手,为什么?
(符合乘法的分配律,两个数的和与一个数相乘,可以先把他们与这个数分别相乘再相加,这叫乘法分配律。)用字母(a±b)×c=a×c±b×c (a、b、c为任意数)
3、观察第三道题,你认为做对的请举手,为什么?
(运用了乘法分配律的逆运算)
五、课堂小结
你能用最简练的语言表述出今天的收获吗?
六、练一练
1、把练习七第6题做在练习本上。
选作题:练习七第9题。
板书设计:
乘法分配律
两个数的和与一个数相乘,可以先把他们与这个数分别相乘再相加,这叫乘法分配律。
(a±b)×c=a×c±b×c (a、b、c为任意数)
篇二十九:《乘法分配律》的教学设计
教学目标
1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。
2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学过程
一、创设情境,谈话导入
谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?
二、自主探究,合作交流
1、交流算法,初步感知。
提问:从图中你获得了哪些信息?
再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。
反馈:你是怎样解决这一问题的?为什么这样列式?
组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。
谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?
学生在自己的本子上写,教师板书,让学生读一读。
谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)
提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?
根据学生回答,列出算式:32×5+45×5和(32+45)×5。
再问:这两个算式有什么关系?可以用什么符号把它们连接起来?
启发:比较这两个等式,它们有什么相同的地方?
2、深入体验,丰富感知。
引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?
分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?
要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。
学生举例并组织交流。
3、揭示规律。
提问:像这样的等式,写得完吗?
谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]
三、实践运用,巩固内化
1、“想想做做”第1题。
谈话:下面我们利用乘法分配律解决一些简单的问题。
出示“想想做做”第1题,让学生在书上填一填。
学生完成后,用课件反馈。
2、“想想做做”第2题。
你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。
回答第2小题时,让学生说一说理由。
3、“想想做做”第3题。(略)
四、梳理知识,反思总结
提问:今天这节课,你有什么收获?有什么感受想对大家说?
五、布置作业
“想想做做”第4、5题。
篇三十:《乘法分配律》的教学设计
教学目标
1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。
2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表
达数学规律的意识,进一步体会数学与生活的联系。
3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学过程
一:创设情境导入
提问:长方形的面积怎样求?
指明回答
这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)
学生动手操作
(课件出示两个长方形组合的动画)
二:自主探索,交流合作
1、交流算法,初步感知
提问:请同学们自己求一下新长方形的面积。
教师巡视,观察学生不同的解法
反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导
(课件出示两种解法)
谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?
学生自己写一写,请学生说一说,教师相机板书。
2、比较分析,深入体会
提问:算式左右两边有什么相同和不同之处呢?小组内交流。
反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。
设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。
组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。
3、规律符号化,揭示规律
提问:像这样的算式,写的完吗?
我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。
反馈引导学生用不同的方式来表达规律。
小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)
三:实践运用,初步理解。
1、想想做做1
学生自主完成,组织交流。
第二小题教师板书,并启发学生从算式所表示的意义角度说一说对这个算式的 理解。并在板书上用箭头标明左边12出现了2次,右边在括号外面的数字就是
12.并向学生介绍这可以称作是乘法分配律的逆向运用(板书)
2、想想做做2
自主完成,组织交流。
第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个
74,也就是74.
第四小题要和想想做做题1的第二小题做对比。
四:拓展延伸,内化新知
再次出示两个长方形纸片,提问:如何比较这两个长方形的大小
学生反馈,引导说出可以重叠比较。学生动手实践
再问:那么大长方形比小长方形大的面积是那一块?
让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。 提问:如何求多出来的面积呢?请同学们自己列式解答。
学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提 示。
学生反馈,交流。课件出示两种解法。
谈话:这两个算式结果相同,解决的也是同一个问题,可以把它们写成一个算 式,课件出示并板书。
再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数 等于这两个数分别与第三个数乘,再相减。
谈话:这个规律用字母如何表示呢?自己试着写写看。
学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的延伸。 五:解决实际问题,内化重点难点。
想想做做题5
课件出示,学生读题。
问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的解释两个 算式之间的联系。
问题二,鼓励学生列出不同的算式解答,并引导学生适当的解释两个算式之间 的联系,加强学生对
乘法分配律延伸的理解与内化。
反思:
这节课我是分三个层次来教学。
第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。 第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。
第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。
最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。
篇三十一:《乘法分配律》的教学设计
设计说明
当我给学生讲到练习四第七题的时候,觉得这道题目可以开发一下用来上乘法分配律,让学生自己制作两个长不一样,宽一样的长方形,通过动手操作来获得求面积和的方法,自然的引出乘法分配律。然后看了下这节课的课后练习,里面有乘法分配律的逆向运用的题目,在其后56页的简便运算中也能用到逆向运用的知识,于是就把这个运用单独列出来作为一个知识层次,联想到我们以前还学习过两数之和乘另一个数等于这两个数分别去乘第三个数再想减的知识,于是就去习题中找有没有类似的题目,在55页第五题中求四年级比五年级多多少人时,如果用乘法分配律的延伸知识可以使计算简便,又看到练习五的三、四两题,就必须要知道这个知识才好解决,于是就把乘法分配律的延伸作为第三个层次的教学了,按照这个思路设计了这节课,实际上下来的效果不错,既调动了学生的学习热情和主动性,又培养了学生自主探索,发现并总结规律的能力。
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。教学目标
1、学生在解决实际问题的过程中发现并理解乘法分配律,并能运用乘法分配律使一些运算简便。
2、学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表
达数学规律的意识,进一步体会数学与生活的联系。
3、学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学过程
一:创设情境导入
提问:长方形的面积怎样求?
指明回答
这里有长分别是10厘米和6厘米,宽都是4厘米的两个长方形纸片,请同学们自己动手把它们组成一个新的长方形。(课件出示题目)
学生动手操作
(课件出示两个长方形组合的动画)
二:自主探索,交流合作
1、交流算法,初步感知
提问:请同学们自己求一下新长方形的面积。
教师巡视,观察学生不同的解法
反馈:请学生说一说自己的解法,应当有两种解法,如果学生说不出来应加以引导
(课件出示两种解法)
谈话:两个算式解决的都是同一个问题,它们计算的结果也相同,能把它们写成一个算式吗?
学生自己写一写,请学生说一说,教师相机板书。
2、比较分析,深入体会
提问:算式左右两边有什么相同和不同之处呢?小组内交流。
反馈交流,在学生发言的基础上,教师根据情况相机引导:等号左边先算什么,再算什么,右边先算什么,再算什么呢?使学生明确:等号左边是10加6的和乘4,等号右边是10乘4的积加6乘4的积。
设疑:是不是类似这样的算式都具有这样的性质呢?学生举例验证。
组织交流反馈。可适当的选取一些数字很大的和很小的例子以及有乘数是0的例子等特殊情况。
3、规律符号化,揭示规律
提问:像这样的算式,写的完吗?
我们可以尝试用自己的方法去表达这个规律,同学们自己试着在小组内写一写,说一说。
反馈引导学生用不同的方式来表达规律。
小结揭示:两个数的和乘另一个数等于这两个数分别乘另外的数再相加。用字母表示:(a+b)×c=a×c+b×c,(板书并课件出示)这就是我们今天要学的乘法分配律。(板书课题)
三:实践运用,初步理解。
1、想想做做1
学生自主完成,组织交流。
第二小题教师板书,并启发学生从算式所表示的意义角度说一说对这个算式的理解。并在板书上用箭头标明左边12出现了2次,右边在括号外面的数字就是
12.并向学生介绍这可以称作是乘法分配律的逆向运用(板书)
2、想想做做2
自主完成,组织交流。
第三小题引导学生从乘法意义角度去理解。并使学生明白74×1可以看做1个74,也就是74。
第四小题要和想想做做题1的第二小题做对比。
四:拓展延伸,内化新知
再次出示两个长方形纸片,提问:如何比较这两个长方形的大小。
学生反馈,引导说出可以重叠比较。学生动手实践。
再问:那么大长方形比小长方形大的面积是那一块?
让学生自己动手摸一摸,课件出示重叠动画,并把多余部分突出显示。提问:如何求多出来的`面积呢?请同学们自己列式解答。
学生若想不到可以用大长方形面积减去小长方形的面积,教师可以适当的提示。
学生反馈,交流。课件出示两种解法。
谈话:这两个算式结果相同,解决的也是同一个问题,可以把它们写成一个算式,课件出示并板书。
再问:这个算式左右两边有什么联系,引导学生说出:两个数的差乘另一个数等于这两个数分别与第三个数乘,再相减。
谈话:这个规律用字母如何表示呢?自己试着写写看。
学生反馈,教师板书并课件出示。说明这个可以看做是乘法分配律的延伸。
五:解决实际问题,内化重点难点。
想想做做题5
课件出示,学生读题。
问题一,要求学生列出不同的算式解答,并通过讨论引导学生适当的解释两个算式之间的联系。
问题二,鼓励学生列出不同的算式解答,并引导学生适当的解释两个算式之间的联系,加强学生对
乘法分配律延伸的理解与内化。
反思:
这节课我是分三个层次来教学。
第一个层次是乘法分配律的教学,学生通过运用不同的方法求新长方形的面积来体会规律,感知规律的合理性。这个环节强调学生的自主探索和动手观察能力。第二个层次是乘法分配律的逆向运用,通过想想做做题1的第二小题的教学,引导学生明确可以从乘法的意义角度来理解算式,并体会乘法分配律的逆向运用。
第三个层次是乘法分配律的延伸,通过让学生动手操作,知道如何比较两个长方形的大小,并通过动手指一指,知道多出的面积就是两者相差的面积。在学生自己动手求解的过程中,初步的体会到诸如:(10-6)×4=10×4-6×4也有类似的规律,并尝试写出用字母如何表达。
最后通过解决实际问题的形式,把发现的规律加以运用,从2个小题的解答中初步体会乘法分配律和乘法分配律延伸的应用。
篇三十二:《乘法分配律》的教学设计
教学目标:
1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。
2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。
3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重点:
理解和掌握乘法分配律的推导过程。
教学难点:
理解和掌握乘法分配律的推导过程。
教学准备:
课件,卡片(课前发给学生)
教学过程:
一、拟定自学提纲
自主预习
1、创设情境:(多媒体出示24页情境图)
教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?
(学生可能提出济青高速公路全长大约多少千米?
相遇时大巴车比中巴车多行多少千米?)
(教师把这两个问题板书在黑板上。)
教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。
2、出示学习目标:这节课的学习目标是:(多媒体出示)
(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。
(2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。
教师引导:有信心达到这两个目标吗?(有!)
老师的指导会对你们的学习有很大的帮助,请看自学指导:
3、出示自学指导(认真看课本第24页到25页第二个红点前的内容,重点看图上同学的对话。思考:
(1)如何求济青公路的全长,有几种解法,如何列式计算。
(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?
(3)什么叫乘法分配律,如何用字母表示?
5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)
4、学生按自学指导自学,教师巡视,关注学困生。
二、汇报交流,评价质疑
调查学情:看完的同学请举手!看会的请放下。
1、小组交流:
学习中你有哪些收获、困惑和体会,请在小组内交流一下。
2、班内汇报:
师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。
课堂生成预设:
(1)济青高速公路全长大约多少千米?
教师追问:第一种算法是先算什么,再算什么?第二种算法呢?
预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;
预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)
(2)相遇时大巴车比中巴车多行多少千米?
(110-90)×2
110×2-90×2
=20×2
=220-180
=40(千米)
教师追问:你能说说两种算式的意思么?
预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;
预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。
(3)观察、比较两种算法的过程和结果,你有什么发现?
预设一:第一种算法是先加(或减)再乘;
预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。
(4)据此,你有什么猜想?
预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
(5)怎样验证你的猜想呢?
(师用线段图帮助学生理清思路)
学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。
通过观察,有何发现?引导学生回答:
举例验证:(125+12)×8=125×8+12×8
(40-4)×25=40×25-4×25
(8+16)×125=8×125+16×125
(80-8)×125=80×125-8×125
…………
(6)通过验证,你能得出什么结论?
结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。
(板书课题)你会用字母表示这个规律吗?
(用字母表示:(a±b)c=ac±bc)
三、抽象概括,总结提升
1、通过以上研究,你得到了什么结论?
课堂预设:
预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。
预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。
预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
预设四:这个规律叫乘法分配律,可以用字母表示为:
(a±b)c=ac±bc
2、如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的猜想?
课堂预设:
举例验证:(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
…………
教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。
设计意图:将乘法分配律适当拓展
3、在记忆这个规律时,应该注意什么?
【设计意图】帮助学生理解、记忆乘法分配律,避免常犯的错误。
课堂预设:
预设一:括号里的每一个数都要乘括号外的数。
预设二:括号里的数必须是相加或相减,如果是相乘就不是乘法分配律。
预设三:这个规律还可以倒过来看。
教师追问:怎样倒过来看?
预设:几个数都乘同一个数,再相加或相减,可以先把它们相加或相减,所得的和或差再乘这个数,结果不变。
四、巩固应用,拓展提高
教师引导:怎么样?学会了吗?想不想挑战一下自己?
1、考一考(课件出示第26页第2题)
(1)指4名学困生板演,其余同做在练习本上。
(2)展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。
课堂预设:(以第一题为例)
(80+70)×5(80+70)×5
=80×70+70×5
=80×5+70×5
2、议一议
(1)你认为谁的答案对,为什么?谁的答案不对,为什么?
(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。
(3)用同样的方法评议其余3题。
(4)同桌互改
(5)统计错题情况,让小组代表说说错误原因。
(6)学生各自订正错题。
3、全课小结:你在本节课中有什么收获?
课堂预设:
预设一:我知道了什么是乘法分配律。
预设二:我又体验了探索数学规律的一般方法――通过观察发现问题――提出猜想――举例验证――得出结论。
预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!
五、当堂训练
1、出示课本第26页第3题
2、《新课堂》第17到第19页信息窗2第1课时内容。
同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。
板书设计
乘法的分配律
济青高速公路全长大约多少千米?
相遇时大巴车比中巴车多行多少千米?
(110+90)×2=110×2+90×2
验证:
(125+12)×8=125×8+12×8
(40-4)×25=40×25-4×25
(8+16)×125=8×125+16×125
(80-8)×125=80×125-8×125
结论:用字母表示:(a±b)c=ac±bc)
(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
拓展:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。
篇三十三:人教版乘法分配律教学设计
【教学内容】
人教版四年级下册课本36页例3.
【教材与学情定位】
本内容是人教版四年级下册四则运算之中的一个规律性知识,是在学生学习认知了加减乘除各部分之间的关系和加法、乘法交换律、结合律之后的知识内容,其承载了 “两个数的和与一个数相乘,可以把这两个数分别同这个数相乘”的内容,学生计算起来容易出现问题或者错误,总是会把其中一个加数与因数相乘,却把另外一个加数忽略。
【设计理念】
1、乘法分配律在学习两位数乘一位数的乘法口算、笔算以及两位数乘两位数的笔算教学中已经有所渗透。乘法分配律的学习是否可以由此引入,由此加强与学生已有知识基础的联系,运用知识的正迁移,解决学生对乘法分配律难理解,易用错的问题。
2、乘法分配律到底难在哪里?是学生体验不到成功,还是乘法分配律作为简便运算的一个方法而不能体现其简便性。如果是又当如何体现,其教学的临界点在哪里?
2、乘法分配律必须在学生了解了乘法交换律和结合律的基础上进行吗?通过两位数乘两位数的乘法计算是否可以进行导入?如果可行,是不是我们在一年的教学中把‘花开两朵单表一枝’做的太过了而忽略了另一只鲜花的存在?
【教学目标】
1、通过观察、分析、比较,引导学生概括、理解并且掌握乘法分配律,体会到乘法分配律作为一种简便运算的手段的可实行性和其存在的必然性。
2、通过观察、分析、比较,培养学生概括、分析、推理的能力。通过观察、分析、比较,培养学生概括、分析、推理的能力。
【教学重点】
从数字到图形到字母形式的转化提炼,抽象概括出乘法分配律。
【教学难点:】
1.理解乘法分配律,体会其优越性。
2.乘法分配律应用中出现的问题如何有效突破。
【教学过程】
1、同学们我们前面学习过两位数乘两位数,
出示:25×14=
算式表示什么意义?(14个25是多少。)你能计算这个题目吗?(能)完成在练习本上。
(师把25×14写在黑板左侧,指生上展示台展示自己的书写过程,并分别说明100是怎么求的?250呢?教师把学生的想法记录在展示本上)
过程:25
×14
100 25×4
25 25×10
350
问及全班,相同计算过程与结果的举手,师边走边问回到黑板刚才我们怎么计算的?100=25×4,再算250=25×10,然后把它们的积+起来,顺手板书(注意前后顺序先写右侧25×4,在写25×10最后写‘+’号)。注意看,前面明明是25×14,怎么在右侧却变成了25×10 和25×4?(实际上是把14分成了10+4的和)
师随生动:14分成(10+4)的和乘25
指25×14表示什么?14个25是多少
指(10+4)×25表示什么?14个25是多少?
指10×25+4×25表示什么?14个25是多少?
可以画等号吗?可以
那下面这几个算式表示什么?也可以这样写吗?
【设计意图】
本环节设计主要是通过两位数乘两位数竖式计算算理的研究,打通与乘法分配律的关系,初步建立知识的感知。
出示15×12= 23×16=
学生观察:发现都是两位数乘两位数的运算,表示可以。
师指生描述算式的含义并由学生独立完成算式转换。
学生通过验证认识到:
15×12=(10+2)×25=10×15+2×15
23×16=(10+6)×23=10×23+6×23
16×25=(10+6)×25=10×25+6×25
现在还想等吗?
15×12=(10+2)×25=10×15+2×15
23×14=(10+4)×23=10×23+4×23
16×25=(10+6)×25=10×25+6×25
生:相等。
师:为什么?谁能说明白为什么仍旧相等?等号左边表示什么右边又表示什么?
生:等号左边表示10+4的和个23就是14个23是多少;右边10个23+4个23是多少。两边都是14个23是多少,所以相等。
师:读一遍等式,体会等式的意义。(此处不去小结,让学生初步意会到,但是不适合言传)
【设计意图】
本环节意在学生初步感知乘法分配律的意义存在,通过等号左右两边的关系和意义说明乘法分配律的存在的意义与其存在的实际价值。
师:同学们如果给你写出左边的算式,你能推导出右边的算式吗?
生:可以。
2、出示三道练习题目,(完成在练习本上)引导学生探究发现、总结规律
(20+3)×37=
(10+9)×23=
(32+25)×74=
学生写出正确的右半边后教师引导学生观察黑板和屏幕上全部内容,等号左边和右边有什么相同和不同吗?你发现了什么?
生可能发现:左侧先算加法,再算乘法,右侧先算乘法再算加法;
左侧三个数,右侧四个数;
……
小结:两个数加起来的和乘第三个数,就等于这两个数分别乘第三个数,然后把乘积加起来。
【设计意图】
通过仿写,学生体会乘法分配律的意义和作用。深刻认知‘分别’的含义。
师抓住第二条,对呀,怎么多了一个数还想等?引导学生发现,屏幕红色字体呈现以(20+3)×37=为例说明是左侧括号里面的数分别乘括号外的数,所以多了一个。你能说出一组符合这个规律的数吗?
生一:(10+5)×74=10×74+5×74
同意的举手,鼓励的掌声送给他
生二:(10+7)×52=10×52+7×52
生三:(10+9)×24=10×24+9×24
生四:(30+2)×52=52×30+52×2
【设计意图】
学生如果完全可以自己仿制,说明这个内容孩子们真的掌握了,明确了,可以使用了,意思能够说明白了,但是仅仅是不能语言描述而已。
师:能说完吗?不能,看来这个层次的大家都没问题了,我出一个你会做吗?下面内容分层出示,体现知识层次性。
(16+△)×51=
(△+■)×○=
引导出字母形式:
(a+b)×c=
师:观察和班上和屏幕上的所有式子,你发现了什么?(可以进一步引导有规律吗?),同桌交流---组内交流(教师深入小组参与交流),全班交流。
【本环节学生必须充分的讨论,争论,作为教师必须在学生的练习中找到问题,并及时全班范围内解决。】
汇报时学生说的意思对就可以,多组汇报之后,逐步修正成比较完善的说法。教师出示规范的说法,学生自己说一遍,同桌互说一遍
小结:刚才我们从两位数乘法入手逐步发现:两个数的和乘一个数,可以把两个数分别同这个数相乘再相加,得数不变。这就是乘法分配律。
字母形式:(a+b)×c=a×c +b×c
也可以写成a×(b+c)=a×b+a×c
【设计意图】
本环节实现从数字到图形到字母形式再到文字表达形式的转化,提高认知难度的同时开拓新的只是先河,为五年级用字母表示数打下初步基础。
3、看谁算的又对又快:
(4+6)×27 ○ 4×27+6×27
(14+86)×39 ○14×39+86×39
(100+1)×37○100×37+1×37
3×62+5×62+2×62=
集体订正,说学生的做法,怎么做的?怎么想的!
【设计意图】通过学生自己计算,感悟、发现乘法分配律作为一种简便运算的手段的优越性和可行性!
4判断:
(1)(36+27)×5=36×5+27×5 ( )
(2)(13+79)×12=13+79×12 ( )
(3)(34+61)×43=34×61+43 ( )
(4)(2+4+3+1)×5=2×5+4×5+3×5+1×5 ( )
手势表示,对的举对号,错误的举起十字。
【设计意图】本环节意在学生判明乘法分配律易错题目的认知,避免今后的练习中出现类似的错误。
5、情景剧:生活中的握手问题:
两个学生到老师这里来看望老师,进门需要握手,通过握手分别对以上题目进行展示,让学生进一步感知为什么不对,把知识做到最大程度的内化。
【设计意图】学生在今后的解决问题中难免碰到类似的错误,如何更加有效地突破其难点,设计一个小情景剧,学生一旦出现类似的错误,只要想起握手问题,将会很容易改正,有效的突破手段。
6、全课小结:这节课我们共同研究了乘法分配律,你能举例说明什么样的算式才符合乘法分配律吗,乘法分配律你会应用了吗?
师:透露个小秘密,这是我们四年级下学期的内容,距离我们还很远,而我们却掌握了这个规律,最后一次把热烈的掌声送给自己。
篇三十四:人教版乘法分配律教学设计
在全校领导和数学教师的帮助和支持下,乘法分配律得到了比较好的呈现和展示,课堂中展示了如下几个亮点:
一、从两位数乘两位数的乘法过渡到乘法分配律是可行的。
自我感觉这样的设计更有利于学生思维的发展,学生在今后的学习中碰到乘法分配律问题完全可以退一步,来更加有效地解决实际问题,譬如学生碰到101×37 99×26等等类似的题目计算起来将更加游刃有余,从而最大程度上避免错误的发生。
二、实现了从数字到图形到字母的自然过渡。
这样的设计与执行,教师的导引学生的观察,而后的给左写右,然后的仿写,说一说。整整操作过程以庞大的数据说明问题,很大程度上自然有序的实现了从数字到图形到字母形式的转化,这个阶段奠定了学生对于乘法分配律基础的理解和其字母形式的最初也是最真实的认知,有利于学生知识连续性的发展和练习中的应用。
三、情景剧的适时引入,促使学生认知更上层楼
生活中的握手问题与乘法分配律有异曲同工之妙,为此,在判断部分加上情景剧,其主要目的是提前的预见性,在学生没有形成问题的时候,我们预感到这里会出现问题而提前预设,从而生成学生的纠错能力,很大程度上提升了学生的学习力。
四、评价给力,激发学生思维
“良言一句三冬暖,恶语伤人六月寒”,教师一句肯定性的评价,一个赞赏的目光,一个给力的动作都会让我们的学生感到教师的鼓励,给自己的鼓舞。正是这样的兴奋才能促使孩子又不断地想法不断迸发出来,去发展,去实现教师所希翼的内容甚至还能出现更高的突破性发展,这正是良性评价的优点,也正是我在课堂上所使用的,这只需要我们教师适时的适度的给孩子们一个合理的良性的评价,而不是哗众取宠,为了评价而评价。
存在不足:
一、细节之处仍存有瑕疵。
个别之处感觉总是不尽人意,很大程度上感觉放不开,不敢放开,这样的感觉制约了课堂的发展,同时制约了学生主体性的发展,也是我今后教学中需要改进的地方,这需要我们做好积淀的同时,给学生一个个升华的机会和时间以及空间,让他们真正的能够当家作主,用他们的语言进行阐述,进行思考。
二、落实上面书写部分尚显弱化。
为了避免学生出现不听课现象,我大力落实学生听课制度,让学生在课堂上最大程度的关注黑板,关注教师,关注其他同学的发言。这样确实提高了学生听得质量,课下反馈,学生听得不错,但是回头考虑,学生写的能力却被忽略,被弱化,长此以往对学生反而会造成另一个极端的不良现象,这更不是我想要的。需要我在今后的教学工作中,掌握好听与写的度,把握好时间分配,提高自己课堂组织能力,给学生一个全方位的发展机会和机遇,让他们在课堂上真正能够玩的开心,听得进去,说得出来,写的正确。保证人人学习不同的数学,人人得到不同的发展,人人学习有意义有价值的数学。
研修将全面结束,磨课已经接近尾声。而我们的教学却在新的平台上全面铺开,作为一线教师,需要我们以研修的精神为引领,以磨课的态度对待平时的每一节课,使我们的每节课尽量精品化,教师和学生能力增长化。让进步成为一种习惯,让成功一次次倍增叠加。
认知不当之处万望批评指正,不胜感激。谢谢!
篇三十五:四年级数学乘法分配律教学设计
教学内容
p28页、练习六习题6——11。
教学目标:
知识与技能:
使学生进一步理解乘法分配律。
过程与方法:
使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
情感与态度:
培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。
教学重点:
理解乘法分配律
教学难点:
区别乘法的运算定律。
教法:
启发引导法、归总法
学法:
自主探究法、合作学习法
教学过程
一、定向导学
1、板书课题
2、揭示目标:理解乘法分配律,并能正确的区别乘法的运算定律。
二、自主学习:10分
1、同桌互相说一说乘法交换律、乘法结合律和乘法分配律。
2、用字母式表示各个乘法的运算定律。
3、填空:
(8+2)×125 =
3×2+7×2=
5×86×2=
(4+2+8)×125=
(3号发言,5号评价,1号补充)
三、合作交流:5分钟
1、 124×99+124怎样简便计算?
2、 52×48-48×48怎样简便计算?
(1号回答其他成员补充)
四、指导练习:5分钟
103×12 20×55 24×205
五、小结检测:20分
小结:通过这节课的练习,你有什么体会?
篇三十六:四年级数学乘法分配律教学设计
教学目标
1.使学生理解乘法分配律的意义.
2.掌握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用
教学难点:
乘法分配律的反应用.
教具:
教学课件一套
教学过程:
一、比赛激趣,提出猜想
(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。 (请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)
7×28+7×72
7×(28+72)
(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)
这两道题运算顺序不同,但结果相同,可以用一个等式表示:
7×28+7×72=7×(28+72)
(3)命名猜想。
这位同学说的非常好,我们就先将他的这个发现命名为××猜想。(板书:猜想)
二、引导探究,发现规律。
1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。
2、商场 “五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)
(1)看到这幅图画,你了解到了什么信息?你想提什么问题?
(2)你能用两种方法列出综合算式吗?
(3)学生独立列式,教师巡视
(4)交流反馈:你是怎么想的,怎样列式计算?
板书:65×5+45×5 (65+45)×5
(5)观察这两个算式,你有什么发现?
3、举例验证,进一步感受
认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)
把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?
4、归纳总结,概括规律。
(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)
(2)刚才我们用举例的方法验证了××猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。
(3)看来这个规律是普遍存在的,××同学,恭喜你!你的猜想是正确的'。这个规律在数学上叫做乘法分配律。
(4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
用字母表示:〔a+b〕×c=a×c+b×c
用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。
(5)大屏幕出示关于乘法分配律的总结,学生齐读。
三、探索发展,应用规律
(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)
(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。
(8+4)× 25 34 ×72+34 ×28
(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)
四 、巩固内化
1、 做“想想做做”第1题
学生独立填写,指名报,全班共同校对。
明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?
2、 做“想想做做”第2题
学生自己判断。然后请生说说判断的依据。
3、 做“想想做做”第3题
让每位学生都用两种方法计算长方形的周长,指名板演。
明确:这两种算法有什么联系?符合什么规律?
小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。
4、 做“想想做做”第4题
让学生各自按运算顺序计算,指定两人板演,共同订正。
提问:每组两道算式有什么联系?哪一题的计算比较简便?
小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。
篇三十七:四年级上册乘法分配律教学设计
四年级上册乘法分配律教学设计
教学目标:
略
知识与技能:
1、让学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。
2、使学生会用字母表示乘法分配律。
3、能用乘法分配律进行简便计算。
过程与方法:
1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。
2、学生在发现规律的过程中,发展比较、分析、抽象、概括的能力,增强用符号表达数学的意识,进一步体会数学与生活的联系。
情感态度与价值观:
1、感受数学知识之间的内在联系,培养学生发现、探究的意识。
2、让学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
重点:理解乘法分配律的意义,并归纳出定律,会运用乘法分配律。
难点:抓住等号左右两边算式的特征和联系,理解乘法分配律的意义。
教学过程:
一、谈话导入,揭示课题。
师:昨天,同学们通过微视频自学了什么内容?(乘法分配律)
这节课我们就进一步深入的学习乘法分配律。
二、交流自主学习任务单
师:通过观看《乘法分配律》的微视频,你知道了什么?
(乘法分配律的意义,如何理解乘法分配律)
(一)小组交流:任务一
1、任务一:乘法分配律的意义
从“举例”、“意义”和“用字母表示”这3点展开交流。
2、学生汇报:
师:谁有不同的举例?像这样的例子可以举多少个?(无数个)
通过举例,你有什么发现?
(揭示乘法分配律的意义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律)
用字母表示:(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
师:“分别相乘”你是怎样理解的?请结合字母表示说一说。
(二)小组交流:任务二
1、任务二:理解乘法分配律
从“画图”、“乘法的意义”这2点展开交流。
2、学生汇报:(画图理解)
师:谁有不同的画法?(课件演示)
仔细看图和等式,谁看懂了?说给大家听。
1、求这个长方形的周长。
4×2+6×2=(4+6)×2
长方形的'周长=(长+宽)×2
师:看来,我们在三年级学习的长方形的周长公式中就孕伏了今天学习的乘法分配律。
2、组合图形大长方形的面积:
4×2+6×2=(4+6)×2
师:计算组合图形的面积中也有乘法分配律,利用数形结合的方法来理解乘法分配律,很好。
3、结合乘法分配律来理解多位数乘法的笔算。
25实际上是把12分成25×12×12()+( )进行计算=25×( + )
师:同学们能联系旧知识学习新知识,真棒!只要你做一个有心人,你就会发现其实数学中有些新、旧知识是有联系的。
4、乘法的意义理解乘法分配律。
4×2+6×2
表示:( )个2( )个2
一共( )个2
所以:4×2+6×2=( + )×2
三、巩固练习。
1、下面哪些算式是正确的?正确的画“√”,错误的画“×”,并说说判断理由。
56×(19+28)=56×19+28( )
32×(7×3)=32×7+32×3( )
64×64+36×64=(64+36)×64( )
2、脱式计算:(两种方法计算)
(8+4)×25(8+4)×25
师:你喜欢哪种计算方法,为什么?
3、用简便方法计算下面各题。
125×48 34×72+34×28
99×38+38 73×30-3×30
4、解决生活中的实际问题。
这套运动服上衣65元,裤子35元。李阿姨购进了42套这种运动服,花了多少钱?(列综合算式解答)
四、总结
通过今天的学习你有什么收获?
篇三十八:四年级《乘法分配律》教学设计
四年级《乘法分配律》教学设计
教学目的:
1.使学生理解掌握乘法分配律的意义,概括出这个定律。
2.培养学生观察、抽象概括以及口头表达的能力。
3.鼓励学生大胆尝试,并渗透通过现象看本质和变中不变的思想
教学重点:理解乘法分配律的意义,并归纳出定律
教学难点:抓住等号左右两边算式的特征和联系,理解乘法分配律的意义。
教具准备:实物投影仪、学具卡,多媒体课件。
教学过程:
一、设疑引入
1、口算
A;B
(2+8)×5;2×5+8×5
(2+10)×3;2×3+10×3
(9+11)×6;9×6+11×6
(12+18)×5;12×5+12×5
(出现第四组口算题时,后一道先不出示,让学生猜一猜可能是怎样的口算题。学生猜后再公布答案。)
教师提出疑问:你们真厉害,一下子就猜对了。这里面有什么秘密吗?
2、我们观察这两组口算题的结果怎样?可以用什么符号连接?等号左右的算式一样吗?
3、教师设疑:为什么上面算式不同而结果相等呢?结果相等的两个算式有什么联系?刚才你们有是根据什么秘密猜出了最后一道口算的?这节课我们一起研究这个问题。
二、指导探索:
1、(小黑板出示长方形图)书P55的第3题:
学校要在这块长方形草地周围植树,你能算出这块草地的周长吗?
(1)学生动手,独立计算周长。
(2)汇报解答思路:(选代表回答)交流时要讲清每一步计算的.意义。
教师板书算式:(64+26)×2;64×2+26×2
(3)观察两个算式计算结果怎样?可用什么符号连接?并引导学生读一读这个算式。65×5+45×5=(65+45)×5
2、统计本班的男女生人数,写在小黑板上。
现在要求每人栽3棵树,那我们班一共能栽多少棵树?
(1)学生动手,独立计算棵树。
(2)汇报解答思路:(选代表回答)交流时要讲清每一步计算的意义。
教师板书算式:
(3)观察两个算式计算结果怎样?可用什么符号连接?并引导学生读一读这个算式。
三、尝试讨论:
1、从上课到现在,我们一共写了6组算式,他们结果相同,可是算式不一样,我们来找找看,这些算式有什么共同的特点?
仔细观察这些算式等号的左边都是一些怎样的算式?(教师根据学生的回答即时小结两个加数的和乘一个数并板书)
仔细观察等号的右边,这些算式又有什么共同的特点?它和左边的算式有什么联系?(教师根据学生的回答及时小结两个加数分别乘第三个数,再把积相加并板书)
2、验证发现:
(1)是不是所有像这样写的两个算式就有这样的规律呢?你能照样子写出几个这样的算式并验证一下吗?
在写之前,先想一想,你写了2个算式准备如何验证?(引导学生用计算的方法验证)
(2)学生尝试写算式。验证,然后汇报交流。
(3)汇报讨论结果:
教师板书学生的算式,并问学生是如何验证的?
(4)观察这些算式,等号左边有什么共同点?右边呢?等号左右两边有什么联系?
(5)小结:等号左边的算式都是两个加数的和与一个数相乘的积,等号右边的算式都是这两个加数分别与一个数相乘,再把所得的积相加。等号左边算式中的两个加数,就是等号右边算式中两个不同的乘数;等号左边算式中的一个乘数,就是等号右边算式中两个相同的乘数.
3、总结乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这就是我们今天学习的乘法分配律(板书课题)。
你能用你喜欢的方式表示这个规律吗?
学生自编公式,集体汇报介绍自己写的公式。
四、反馈调节:
1、你能用今天学的知识解释,刚才你怎么猜出第四道口算题的?
2、现在我们把书翻到P55第1题,这些等式不完整,你能把它们补充完整吗?
先请学生读题目要求
(42+35)×2=42+35
2712+4312=(27+)
1526+1514=()
72(30+6)=
学生自己思考,填写,校对时请学生说一说是怎样思考的,填写的依据是什么?
2、书P55的第二题:在作业纸上呈现。
先请学生读题目要求,再独立完成,校对时说说自己是怎么判断的?
(64+36)×8=64×8+36×8
(28+32)×7=28×7+32×
15×39+45×39=(15+45)×39
40×50+50×90=40×(50+90)
74×(20+1)=74×20+74
25×(17+3)=25×17+25×3
再请学生在四组得数相等的算式中各选做一题,比比谁算得快。
学生选题计算。
交流都是选得什么题目?为什么选它们?(因为计算简便)
运用乘法分配律还可以使计算简便,该怎样简算,这是我们下节课学习的内容。
3、解决实际问题:
(1)变新授时的长方形题目为求这个长方形的长比宽多多少米?
让学生独立解答。汇报交流。(得到两种解法,板书)
(2)变植树题为求女生比男生少种多少棵树?
让学生独立解答。汇报交流。(得到两种解法,板书)
(3)现在你对乘法分配律有什么新的认识吗?
五、总结:
今天你学会了什么?你能向大家介绍一下乘法分配律吗?
篇三十九:四年级《乘法分配律》的教学设计
教学内容分析:
乘法分配律是北师大版小学数学四年级上册第三单元P48~P49的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
1、在这些学习活动中,使学生感受到他们的身边处处有数学。
2、增加学生之间的了解、同时体会到小伙伴合作的重要。
3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学过程:
一、创设情境,激趣导入。
1、出示:
125×8=25×9×4=18×25×4=
125×16=75+25=89×100=
教师请个别学生口算并说出部分题的口算依据及应用的定律。
2、再出示:119×56+119×44=
师;这一题,谁能口算出来?老师可以口算出来,你们相信吗?是不是老师又应用到数学的什么定律呢?你们想不想知道?
二、引导探究,发现规律。
1、出示课本插图
师:你们看,工人叔叔正在工作呢,观察这幅图,你能发现哪些数学信息?
生:我看到两个工人叔叔在贴瓷砖。
生:我发现一个叔叔贴这面墙壁,另一个叔叔贴另一面墙壁。
生:老师,我发现两个叔叔贴的瓷砖一起数的话,一行有10块,一共有9列。
师:你真细心。大家能根据获得的信息提一个数学问题吗?
学生提问题,教师出示问题:一共贴了多少块瓷砖?
2、估计
师:谁能估计工人叔叔大约贴了多少块瓷砖?
学生试着估计。
3、列式解答
师:同学们的估计是否正确呢?请你们用自己喜欢的方法计算一下瓷砖究竟有多少块。
学生用自己喜欢的方法计算,教师巡视。
师:谁来向大家介绍一下自己的算法?
生:6×9+4×9(板书)
=54+36
=90(块)
师:这边的6×9和4×9分别是算什么?
生:分别算出正面和侧面贴的块数。
师:哦,然后两面的块数再相加,就是贴的总块数。你们明白吗?还有不一样的方法吗?
生:我是这样列的,(6+4)×9(板书)
=10×9
=90(块)
师:你能说说为什么这样列式吗?
生:两面墙共有9列,一行有6+4块,所以我先算出一行有10块,再用10×9算出共有多少块瓷砖。
师:你真行,找到了这种方法。现在同学们看一下这两种方法,你发现了什么?
生:计算方法不一样,结果却是一样的。
师:所以这两个式子我们可以用一个什么样的数学符号连接起来?
生:等于号。
教师板书。
4、观察算式的特点
师:观察等号两边的式子,它们有什么特点呢?
生:等号左边的算式是两个加数的和与一个数相乘的积,等号右边
的算式是这两个加数分别与一个数相乘,再把所得的积相加。
生:等号左边算式中的两个加数,就是等号右边算式中两个不同因数;等号左边算式中的一个因数,就是等号右边算式中两个相同的因数。
师:是这样吗?你们能再举一些类似的例子吗?
5、举例验证
让学生根据算式特征,再举一些类似的例子。
如:(40+4)×25和40×25+4×25
63×64+63×36和63×(64+36)
讨论交流:
(1)交流学生的举例是否符合要求:
(2)交流不同算式的共同特点;
(3)还有什么发现?(简便计算)
师:两个数的和与一个数相乘的积等于每个加数分别与这个数相乘再把所得的积加起来,这叫做乘法分配律。
6、字母表示。
师:如果用a、b、c分别表示三个数,你能写出你的发现吗?
学生先独立完成,然后小组交流。最后教师板书:(a+b)×c=a×c+b×c并带读。
7、揭示课题。
三、应用规律,解决问题。
课文第49页的“试一试”。请同桌讨论探究下面这些题目怎样计算比较简便?
1、(80+4)×25
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。
(3)鼓励学生独自计算。
2、34×72+34×28
(1)呈现题目。
(2)指导观察算式特点,看是否符合要求。
(3)简便计算过程,并得出结果。
3、让生观察:36×3
=30×3+6×3
=90+18
=108
师:你能说说这样计算的道理吗?
生独自思考,小组讨论,全班交流。
四、总结。
师:说说这节课你有什么收获?
师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。希望同学们要在理解的基础上牢牢记住它。
篇四十:四年级《乘法分配律》的教学设计
【教学内容】
《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。
【教材简析】
本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。
【教学目标】
1.结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。
2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。
3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。
【教学重点】
让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。
【教学难点】
清楚地表述自己发现的规律,理解及应用乘法分配律。
【教学过程】
一、创设情境,感知规律
1.提出问题,列出算式。
出示情境图
谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?
信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。
问题预设:济青高速公路全长约多少千米?(板书)
谈话:请你试着用两种方法在答题纸上解答。
生独立解答。
预设:
2.结合情境,感知规律。
提出要求:结合线段图说说算式每一步的含义。
回答预设:①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。
②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。
【设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。】
二、研究素材,猜测规律
教师引导学生观察算式谈发现。
预设发现:两个算式结果相等。可以用等号连接。
教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。
预设区别:①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。
②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。
谈话:根据前面运算律的学习,你有什么想法?
预设回答:这可能又是一个规律。
【设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。】
三、讨论交流,验证规律
1.举例验证规律。
谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。
学生独立计算举例。
指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。
谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的等式是否成立。
预设举例:(25+35)×4=25×4+35×4
(60+50)×2=60×2+50×2
(65+55)×42=65×42+55×42
……
教师引导学生发现像这样的例子举不完,可以用省略号表示。
2.观察几组等式的相同点。
教师引导学生观察这几组等式的左边和右边分别有什么相同点。
预设回答:①这几组等式的左边都是两个数的和乘一个数。
②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。
3.总结规律。
教师引导学生用自己的话说说这个规律。
谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。
教师出示乘法分配律。
谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。
生按要求说什么是乘法分配律。
谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?
预设回答:可以用字母表示。
教师要求学生在答题纸上试着用字母abc来表示乘法分配律。
学生试着在答题纸上写字母表达式。
指生板演(a+b)c=ac+bc。
谈话:对于乘法分配律用字母来表示,感觉怎么样?
预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!
教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。
【设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。】
四、巩固拓展,应用规律
1.连一连。
2.在□里填上合适的数或字母。
3.火眼金睛辨对错。
篇四十一:四年级《乘法分配律》的教学设计
教学内容
苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。
教学目标
1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。
2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学过程
一、创设情境,谈话导入
谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)
二、自主探究,合作交流
1、交流算法,初步感知。
提问:从图中你获得了哪些信息?
再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。
反馈:你是怎样解决这一问题的?为什么这样列式?
组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。
谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?
学生在自己的本子上写,教师板书,让学生读一读。
谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)
提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?
根据学生回答,列出算式:32×5+45×5和(32+45)×5。
再问:这两个算式有什么关系?可以用什么符号把它们连接起来?
启发:比较这两个等式,它们有什么相同的地方?
2、深入体验,丰富感知。
引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?
分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?
要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。
学生举例并组织交流。
3、揭示规律。
提问:像这样的等式,写得完吗?
谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。
反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)
小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]
三、实践运用,巩固内化
1、“想想做做”第1题。
谈话:下面我们利用乘法分配律解决一些简单的问题。
出示“想想做做”第1题,让学生在书上填一填。
学生完成后,用课件反馈。
2、“想想做做”第2题。
你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。
回答第2小题时,让学生说一说理由。
3、“想想做做”第3题。(略)
四、梳理知识,反思总结
提问:今天这节课,你有什么收获?有什么感受想对大家说?
五、布置作业
“想想做做”第4、5题。
[说明]
数学教学是数学活动的教学。本节课注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,先组织学生通过用两种不同的方法解决一些实际问题,在两个不同的算式之间建立起联系,得到了两个等式,并比较这两个等式有什么相同的地方,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,为学生提供符合乘法分配律和不符合乘法分配律的五组算式,引导学生在小组辨析与争论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。
篇四十二:四年级《乘法分配律》的教学设计
教学内容:青岛版四年级下册第24-25页红点内容 信息窗2 第1课时
教学目标:
1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。
2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。
3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。
教学重点:理解和掌握乘法分配律的推导过程。
教学难点:理解和掌握乘法分配律的推导过程。
教学准备:课件,卡片(课前发给学生)
教学过程:
一、拟定自学提纲
自主预习
1. 创设情境:(多媒体出示24页情境图)
教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?
(学生可能提出 济青高速公路全长大约多少千米?
相遇时大巴车比中巴车多行多少千米?)
(教师把这两个问题板书在黑板上。)
教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。
2. 出示学习目标:这节课的学习目标是:(多媒体出示)
(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。
(2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。
教师引导:有信心达到这两个目标吗?(有!)
老师的指导会对你们的学习有很大的帮助,请看自学指导:
3. 出示自学指导(认真看课本第24页到25页第二个红点前的内容,重点看图上同学的对话。思考:
(1)如何求济青公路的全长,有几种解法,如何列式计算。
(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?
(3)什么叫乘法分配律,如何用字母表示?
5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)
4. 学生按自学指导自学,教师巡视,关注学困生。
二、汇报交流 评价质疑
调查学情:看完的同学请举手!看会的请放下。
1.小组交流:
学习中你有哪些收获、困惑和体会,请在小组内交流一下。
2.班内汇报:
师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。
课堂生成预设:
(1)济青高速公路全长大约多少千米?
教师追问:第一种算法是先算什么,再算什么?第二种算法呢?
预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;
预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)
(2)相遇时大巴车比中巴车多行多少千米?
(110-90)×2 110×2-90×2
=20×2 =220-180
=40(千米) =40(千米)
教师追问:你能说说两种算式的意思么?
预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;
预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。
(3)观察、比较两种算法的过程和结果,你有什么发现?
预设一:第一种算法是先加(或减)再乘;
预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。
(4)据此,你有什么猜想?
预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
(5)怎样验证你的猜想呢?
(师用线段图帮助学生理清思路)
学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。
通过观察,有何发现?引导学生回答:
举例验证:(125+12)×8 = 125×8+12×8
(40-4)×25 = 40×25-4×25
(8+16)×125 = 8×125+16×125
(80-8)×125 = 80×125-8×125
…… ……
(6)通过验证,你能得出什么结论?
结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。
(板书课题)你会用字母表示这个规律吗?
(用字母表示:(a± b) c=ac±bc)
三、抽象概括 总结提升
1.通过以上研究,你得到了什么结论?
课堂预设:
预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。
预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。
预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。
预设四:这个规律叫乘法分配律,可以用字母表示为:
(a± b) c=ac±bc
2.如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的猜想?
课堂预设:
举例验证:(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
…… ……
教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。
设计意图:将乘法分配律适当拓展
3.在记忆这个规律时,应该注意什么?
【设计意图】帮助学生理解、记忆乘法分配律,避免常犯的错误。
课堂预设:
预设一:括号里的每一个数都要乘括号外的数。
预设二:括号里的数必须是相加或相减,如果是相乘就不是乘法分配律。
预设三:这个规律还可以倒过来看。
教师追问:怎样倒过来看?
预设:几个数都乘同一个数,再相加或相减,可以先把它们相加或相减,所得的和或差再乘这个数,结果不变。
四、巩固应用 拓展提高
教师引导:怎么样?学会了吗?想不想挑战一下自己?
1.考一考(课件出示第26页第2题)
(1) 指4名学困生板演,其余同做在练习本上。
(2) 展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。
课堂预设:(以第一题为例)
(80+70)×5 ( 80+70)×5
=80×70+70×5 =80×5+70×5
2.议一议
(1)你认为谁的答案对,为什么?谁的答案不对,为什么?
(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。
(3)用同样的方法评议其余3题。
(4)同桌互改
(5)统计错题情况,让小组代表说说错误原因。
(6)学生各自订正错题。
3.全课小结:你在本节课中有什么收获?
课堂预设:
预设一:我知道了什么是乘法分配律。
预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。
预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!
五、当堂训练
1.出示课本第26页第3题
2.《新课堂》第17到第19页信息窗2第1课时内容。
同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。
板书设计
乘法的分配律
济青高速公路全长大约多少千米? 相遇时大巴车比中巴车多行多少千米?
(110+90)×2=110×2+90×2 (110-90)×2=110×2-90×2
验证:
(125+12)×8 = 125×8+12×8 (40-4)×25 = 40×25-4×25
(8+16)×125 = 8×125+16×125 (80-8)×125 = 80×125-8×125
结论:用字母表示:(a± b) c=ac±bc)
(2+3+5)×4=2×4+3×4+5×4
(1000+100+10)×3=1000×3+100×3+10×3
拓展:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。
使用说明:
1.教学反思:
乘法分配律是第二单元的教学难点也是重点。这节课的设计。我是从学生的`生活问题入手,利用相遇问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:
(1)引入生活问题,激趣探究。
在教学中,我为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。首先我创设情景,提出问题:“一共有多少名学生参加这次植树活动?”。让学生根据提供的条件,用不同的方法解决,从而发现(125+12)×8 = 125×8+12×8这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。
(2)提供学生独立探究的机会。
我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。
(3)为学生的学习方式的转变创设了条件。
为了让“改变学生的学习方式,让学生进行探索性的学习”不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。
不足之处:
(1)本课堂我的教学程序是:先出示情景图,根据情景图上所给的信息列出算式:并且让学生说说这两个算式的含义,然后让学生读读这个算式(意图是让学生去感知乘法分配律),然后再让学生去写出两个类似的算式(意图是让学生体验乘法分配律)写完之后再板书几个同学所写的算式并选取期中一个同学的算式让他说说算式的左边为什么等于右边(110+90)×2=110×2+90×2);而且我还要求同学们用不同的方法来说(意图是让不同层次的同学们都能反复去感知乘法分配律),通过刚才的几道程序,然后再让同学们去总结这类算式左边和右边的特点,得出乘法分配律,最后通过练习巩固和加深同学们对乘法分配律的认识。原以为这样上会有一个比较好的效果,但是事与愿违,在要同学们独立写出两个类似的算式时,发现有小部分同学并不会写,所以本堂课后面部分上得就不怎么顺畅了。课后向老师请教得知,原来我的教学程序上出现问题了----违背了学生的认知规律,应该是先由老师引导学生总结出乘法分配律,再让学生写出类似的算式,体验乘法分配律,最后再通过练习巩固和加深学生对乘法分配律的认识。
(2)在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。
(3)在学生总结出乘法分配律的概念时,我只是一笔带过的把乘法分配律通过课件再展示给学生们看了一遍,没有反复强调乘法分配律的特点,导致学生没有较好的掌握乘法分配律。
2.使用建议:
(1)教师在创设情境时一定要激发学生探索的愿望。学生在情境的引导下,主动实现对数学知识的认识和理解。
(2)在练习时采用小组活动是必须的,这样学生之间可以互帮互助,共同进步。激发学生的学习热情。练习时一定要给学生足够的讨论时间。
(3)订正汇报时,让学生之间相互评价。
3.急需解决的问题:
如何使课堂更加实用高效?如何解决学生运用乘法分配律进行简便计算的“漏乘”问题?
篇四十三:四年级《乘法分配律》的教学设计
教学内容:
教科书书第54的例题以及55页的“想想做做”。
教学目标:
1、让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。
2、让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点和难点:
发现并理解乘法分配律。
教学准备:
多媒体课件。
教学过程:
一、复习旧知,作好铺垫
同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)
今天这节课,我们要来研究乘法的另外一个运算定律。
二、联系实际,探究规律
1、谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!
2、课件例题情景图。
(1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)
(2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?
指名说出算式,教师随学生回答板书:
(65+45)×565×5+45×5
让回答的两名学生说说自己的想法。(即先算的是什么。)
第一个算式:先算买一套衣服用多少元。
第二个算式:先算买5件夹克衫和5条裤子各用多少元。
(3)猜一猜:这两个算式结果会怎样?(相等)
(4)计算验证。
师:真相等吗?让我们动笔来算一算,男生算第一道,女生算第二道,做在自备本上。
集体交流,指名汇报计算过程。
(5)师:通过计算,我们发现这两个算式的结果的确是相同的,可以给它们画上等号。(板书:=)我们把这个等式轻声读一读。(学生轻声读读这个等式。)
3、探索、发现规律。
(1)师:仔细观察等号左右两边的算式,这两个算式有什么相同的地方和不同的地方?把你的想法与同桌交流一下。
同桌讨论交流,指名汇报,鼓励学生自由发表意见。
(学生可能说:等号左边有65、45和5这三个数,右边也有这三个数;都有乘法与加法;等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积……)
(2)在学生发言的基础上,教师相机引导学生初步得出:65加45的和与5相乘,等于把65和45分别与5相乘,再把两个积相加。
(3)师:是不是所有这样的两道算式之间都有这样的联系呢?谁再来举个例子?
指名举例,计算算式结果,得出等式,教师板书。
师:会不会是巧合呢?请你在本子上再举些例子验证一下。(学生独立举例验证。)
学生汇报验证的结果。教师结合学生回答板书三个等式。
问:还有许多同学要发言,说明这样的例子还有很多很多,举得完吗?
师:这么多等式,看来这不是巧合了,而是藏着一定的秘密在里面。你有什么发现呢?再与你的同桌轻声说一说。
(4)指名2到3人说说发现,教师随机小结:同学们,刚才我们通过观察发现:两个数的和乘第三个数,可以把这两个加数分别和第三个数相乘,再把两个积相加,结果不变。(课件出示)这就是我们今天要学习的乘法分配律。(板书课题)
(5)刚才几位同学在用语言叙述这个规律时感觉有些困难,你会用比较简洁的方法表示出乘法分配律吗?你可以用文字、图形、字母等表示它。
展示各种表达方法,集体交流,估计会有学生想到用字母或图形等来表达。
表扬写对的同学,并指出:刚才的这些表达方法都是可以的。特别是写出(a+b)×c=a×c+b×c的同学,你们和数学家想到一起了。在数学上,我们就用字母a、b、c表示三个数,这个规律可以写成(a+b)×c=a×c+b×c。(板书,顺着读,逆着读)
师:用字母公式来表示乘法分配律,你又有什么感觉?(简洁、明了)这就是数学的简洁美。
三、应用规律,巩固练习
1、对于今天学的乘法分配律会了吗?真的会了吗?好,那就考考你自己!(出示“想想做做”第2题)横着看,在得数相同的两个算式后面画“√”。
学生自己判断。集体交流时指名说说是怎么判断的?
第3小题汇报时要问:为什么是对的呢?提醒学生注意74×1可直接写成74。
问:为什么你认为第4题不对呢?说说你的理由。怎样改就对了呢?
2、掌握得真不错!下面打开书看55页“想想做做”第1题。
学生独立填写后,指名汇报。
讨论第2小题时问:两个乘法中相同的乘数是几?应该把相同的乘数放在括号外面,而且这是乘法分配律的逆向运用!
3、完成“想想做做”第3题。(课件出示长方形菜地:长64米,宽26米)
问:图上给我们提供了长方形菜地的什么信息?
你会用两种不同的方法计算它的周长吗?
(1)学生完成在自备本上,指名板演两种不同的方法。
(2)集体交流,出示:(64+26)×264×2+26×2
师:刚才大家用两种不同的方法计算了长方形的周长,看这两道算式,问:哪种算法比较简便?它们的结果怎样?符合什么规律?
师:看来我们早在三年级学习长方形的周长时就已经接触过乘法分配律了。
4、完成“想想做做”第4题。
出示题目,观察这两组算式,想想每组中两个算式的结果是否相同?为什么?
比一比:请你从每组中各选一道喜欢的算式进行计算,比比谁算得又对又快。
学生计算后,集体交流:你们选的哪两道?为什么喜欢这两道?
(估计大多数学生会选择(64+36)×8和25×(17+3),因为这两道计算起来比较简便。)
这两道计算起来比较麻烦的算式如果让你来计算,你有什么好方法吗?(出示2题)
指名说计算过程,教师用课件展示简算过程。
小结:看,我们学会了乘法分配律使一些计算麻烦的题目变简单了。明天我们还会更深入地来学习简便计算。
5、谈话:开学初,学校为了丰富大家的大课间活动,购买了一批体育器材,看看是什么?(课件出示图片和信息:空竹每个17元,飞盘每个8元,铁环每个15元。)每种玩具都购买了60个,一共要花多少钱?
学生独立完成在自备本上,投影展示不同的算法。
观察这个等式,你有什么想告诉大家吗?
师小结:看来,乘法分配律不仅可以是两个加数的和乘第三个数,还可以推广到3个加数的和去乘,甚至更多的加数呢!
四、总结回顾
问:今天这节课,你有什么收获?
五、课堂作业
完成“想想做做”第5题。
篇四十四:四年级《乘法分配律》的教学设计
教学目标
知识与技能:引导学生探究和理解乘法分配律。
过程与方法:感受数学与现实生活的联系,能用所学知识解决简单的实际问题。
情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。教学重点:乘法分配律的意义和应用。
教学难点:乘法分配律的反应用。
教具学具:多媒体课件
教学过程
一、复习引入
前几节我们学习的乘法交换律、结合律及应用它们可以使一些计算简便。
什么是乘法的交换律和结合律?
今天这节课我们再来学习乘法的另一个运算定律。
二、新课探究
出示主题图:还记得我们提出的第三个问题吗?
参加植树的一共有多少人?
1、你怎样解决这个问题?列式计算
2、汇报:
第一种算法:先算每个小组里有多少人?
(4+2)×25
=6×25
=150(人)
第二种算法:先分别算出负责挖坑、种树的人数和负责抬水、浇树的人数。
4×25+2×25
=100+50
=150(人)
3、观察这两个算是有什么特点?
4、讨论,你得到什么结论?
5、汇报:两个数的和于一个数相乘,可以先把它们与这个数分别相乘再相加。
6、小结:这个规律就是乘法分配律。
7、用字母怎样表示这个规律?
三、巩固练习
1、P27做一做
2、拓展:乘法分配律是否也适用于减法?
验证:18x5-5x8(18-8)x5
265×105-265×5265×(105-5)
结论:适用【2】教材分析:本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的重要基础,对提高学生的计算能力有着举足轻重的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。
学情分析:学生具有很好的自主探究、团队合作、与人交流的习惯,在学习了乘法交换律和乘法结合律知识后,掌握了一些算式的规律,有了一些探究规律的方法和经验,只要教师注意指导和点拨,就一定会获得很好的教学效果。
教学目标:
知识与能力:
1、在探索的过程中,发现乘法分配律,并能用字母表示。
2、会用乘法分配律进行一些简便计算。
过程与方法:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程。
2、经历共同探索的过程,培养解决实际问题和数学交流的能力。
情感、态度与价值观:
在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。
教学重点和难点:
教学重点:理解并掌握乘法分配律,发现问题、提出假设、举例验证、探索出乘法分配律。
教学难点:乘法分配律的推理及应用。
教学过程:
一、复习引入,质疑猜想
1、出示口算题:
师:前段时间,我们发现了四则运算中的加法交换律、乘法交换律、加法结合律和乘法结合律,我们知道利用这些运算定律可以使一些计算更简便。下面各题看谁算得又对又快。
358+25+7572+493+2825×19×4
12×125×8168×5×214×2=
交流:你是怎样想的?
2、分组计算比赛
师:下面我们再来一场分组计算比赛,好不好?
出示:脱式计算
第二组题目:45×12+55×1234×72+34×28
第一、三组:(45+55)×12(72+28)×34
师:你们觉得这场比赛公平吗?仔细观察两组算式,大家有什么发现?两个算式的结果是相等的,结果为什么相等呢?接下来,我们一起去进一步探究。
二、探究新知,验证猜想
1、出示:用两种方法计算这两个长方形中一共有多少个小方格?
8×4+5×4(8+5)×4
思考:为什么两个算式的结果相同呢?
左边算式表示8个4加5个4,(一共13个4),右边也是求13个4,所以结果相等。
2、出示:淘气打一份稿件,平均每分钟打字178个,他先打了6分钟,后又打了4分钟完成这份稿件。
(1)请提一个数学问题(淘气一共打了多少个字?)
(2)用两种方法解答问题
(3)思考:为什么两次计算的结果相同呢?
3、师:仔细观察,像上面这样的等式,你能再列出一组吗?在自己练习本上列一列,算一算,验证一下。这样的等式列得完吗?用a、b、c代表三个数,你能写出上面发现的规律吗?(a+b)×c=a×c+b×c大家发现的这个规律其实就是乘法分配律(板书课题)。
能用自己的话说说什么叫乘法分配律吗?(两个加数的和与一个数相乘就等于把两个加数分别与这个数相乘,然后把乘积相加)
想一想:这里的分配,表示什么意思?(表示分别配对的意思。)
师:这道等式反过来写,依然成立吗?
三、巩固新知,应用定律
1、填一填:
4×(25+8)=__×___+___×__
38×37+62×37=___×(___+___)
502×19+11×502=___×(___+___)
48×99+48×1=___×(___+___)
a×b+a×c=___×(___+___)
2、判断对错:
8×(125+9)=8×125+9()
27×8+73×8=27+73×8()
(12+6)×5=(12×5)×(6×5)()
(25+9)×4=25×4+9×4()
3、试一试
(1)观察(40+4)×25的特点并计算
(2)观察34×72+34×28的特点并计算
4、分组计算比赛
85×16+15×16(40+8)×25
68×128-68×2834×(100+20)
四、总结全课
今天,我们又发现了什么?
五、课外思考
其实,乘法分配律我们并不陌生,大家想一想,以前在什么时候我们用过乘法分配律?
篇四十五:四年级《乘法分配律》的教学设计
教学目标:
1.让学生在解决问题的过程中发现并理解乘法分配律(含用字母表示),初步了解乘法分配律的应用。
2.让学生参与知识的形成过程,培养学生比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.让学生感受数学规律的确定性和普遍适用性,获得发展数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重点和难点:
发现并理解乘法分配律。
教学准备:
多媒体课件。
教学过程:
一、复习旧知,作好铺垫
同学们,上学期,我们已经学习了乘法的两个运算定律,那谁来说说它们的名称和字母公式呢?(随学生回答出示小卡片:乘法交换律和乘法结合律。)
今天这节课,我们要来研究乘法的另外一个运算定律。
二、联系实际,探究规律
1.谈话:五一快要来了,商场正在开展服装促销活动呢!一其去看看吧!
2.课件例题情景图。
(1)问:仔细观察,从图中你获得了哪些信息?(短袖衫:每件32元;裤子:每条45元;夹克衫:每件65元。买5件夹克衫和5条裤子。)
(2)问:李阿姨一共要付多少钱呢?谁能口头列出综合算式?
指名说出算式,教师随学生回答板书:
(65+45)×5 65×5+45×5
让回答的两名学生说说自己的想法。(即先算的是什么。)
第一个算式:先算买一套衣服用多少元。
第二个算式:先算买5件夹克衫和5条裤子各用多少元。
(3)猜一猜:这两个算式结果会怎样?(相等)
(4)计算验证。
师:真相等吗?让我们动笔来算一算,男生算第一道,女生算第二道,做在自备本上。
集体交流,指名汇报计算过程。
(5)师:通过计算,我们发现这两个算式的结果的确是相同的,可以给它们画上等号。(板书:=)我们把这个等式轻声读一读。(学生轻声读读这个等式。)
3.探索、发现规律。
(1)师:仔细观察等号左右两边的算式,这两个算式有什么相同的地方和不同的地方?把你的想法与同桌交流一下。
同桌讨论交流,指名汇报,鼓励学生自由发表意见。
(学生可能说:等号左边有65、45和5这三个数,右边也有这三个数;都有乘法与加法;等号左边是65加45的和乘5,右边是65乘5的积加45乘5的积。……)
(2)在学生发言的基础上,教师相机引导学生初步得出:65加45的和与5相乘,等于把65和45分别与5相乘,再把两个积相加。
(3)师:是不是所有这样的两道算式之间都有这样的联系呢?谁再来举个例子?
指名举例,计算算式结果,得出等式,教师板书。
师:会不会是巧合呢?请你在本子上再举些例子验证一下。(学生独立举例验证。)
学生汇报验证的结果。 教师结合学生回答板书三个等式。
问:还有许多同学要发言,说明这样的例子还有很多很多,举得完吗?(板书:……)师:这么多等式,看来这不是巧合了,而是藏着一定的秘密在里面。你有什么发现呢?再与你的同桌轻声说一说。
(4)指名2到3人说说发现,教师随机小结:同学们,刚才我们通过观察发现:两个数的和乘第三个数,可以把这两个加数分别和第三个数相乘,再把两个积相加,结果不变。(课件出示)这就是我们今天要学习的乘法分配律。(板书课题)
(5)刚才几位同学在用语言叙述这个规律时感觉有些困难,你会用比较简洁的方法表示出乘法分配律吗?你可以用文字、图形、字母等表示它。
展示各种表达方法,集体交流,估计会有学生想到用字母或图形等来表达。
表扬写对的同学,并指出:刚才的这些表达方法都是可以的。特别是写出(a+b)×c=a×c+b×c的同学,你们和数学家想到一起了。在数学上,我们就用字母a、b、c表示三个数,这个规律可以写成(a+b)×c=a×c+b×c。(板书,顺着读,逆着读)
师:用字母公式来表示乘法分配律,你又有什么感觉?(简洁、明了)这就是数学的简洁美。
三、应用规律,巩固练习
1. 对于今天学的乘法分配律会了吗?真的会了吗?好,那就考考你自己!(出示“想想做做”第2题) 横着看,在得数相同的两个算式后面画“√”。
学生自己判断。集体交流时指名说说是怎么判断的?
第3小题汇报时要问:为什么是对的呢?提醒学生注意74×1可直接写成74。
问:为什么你认为第4题不对呢?说说你的理由。怎样改就对了呢?
2.掌握得真不错!下面打开书看55页“想想做做”第1题。
学生独立填写后,指名汇报。
讨论第2小题时问:两个乘法中相同的乘数是几?应该把相同的乘数放在括号外面,而且这是乘法分配律的逆向运用!
3.完成“想想做做”第3题。(课件出示长方形菜地:长64米,宽26米)
问:图上给我们提供了长方形菜地的什么信息?
你会用两种不同的方法计算它的周长吗?
(1)学生完成在自备本上,指名板演两种不同的方法。
(2)集体交流,出示:(64+26)×2 64×2+26×2
师:刚才大家用两种不同的方法计算了长方形的周长,看这两道算式,问:哪种算法比较简便?它们的结果怎样?符合什么规律?
师:看来我们早在三年级学习长方形的周长时就已经接触过乘法分配律了。
4.完成“想想做做”第4题。
出示题目,观察这两组算式,想想每组中两个算式的结果是否相同?为什么?
比一比:请你从每组中各选一道喜欢的算式进行计算,比比谁算得又对又快。
学生计算后,集体交流:你们选的哪两道?为什么喜欢这两道?
(估计大多数学生会选择(64+36)×8和25×(17+3),因为这两道计算起来比较简便。)
这两道计算起来比较麻烦的算式如果让你来计算,你有什么好方法吗?(出示2题)
指名说计算过程,教师用课件展示简算过程。
小结:看,我们学会了乘法分配律使一些计算麻烦的题目变简单了。明天我们还会更深入地来学习简便计算。
5. 谈话:开学初,学校为了丰富大家的大课间活动,购买了一批体育器材,看看是什么?(课件出示图片和信息:空竹每个17元,飞盘每个8元,铁环每个15元。)每种玩具都购买了60个,一共要花多少钱?
学生独立完成在自备本上,投影展示不同的算法。
观察这个等式,你有什么想告诉大家吗?
师小结:看来,乘法分配律不仅可以是两个加数的和乘第三个数,还可以推广到3个加数的和去乘,甚至更多的加数呢!
四、总结回顾
问:今天这节课,你有什么收获?
五、课堂作业
完成“想想做做”第5题。
篇四十六:四年级《乘法分配律》的教学设计
乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。
教学内容:教材第54~55页例题,完成“做一做”。
教学目标:
1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。
2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功
感,增强学习的兴趣和自信。
教学重、难点:
发现并理解乘法分配律。
教具准备:
多媒体课件一套。
教学过程
一、创设问题情境
谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)
二、展开探索过程
1、初步感知。
提问:仔细观察,从图中你获得了哪些信息?
学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。
提问:猜一猜,这两种方法的计算结果会怎么样?
计算验证:算一算,来证明你的猜想是正确的。
板书等式:(30+25)x4=30x4+25x4
2、类比展开。
(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6
(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?
要求6套课桌椅多少元,你准备怎么解决?
板书:(100+60)x6=100x6+60x6
3、体验感悟。
(1)类似这样的.等式还有吗?你能写出第4组吗?
学生举例后,挑3组板书。
(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)
同桌互相检查刚才写的算式是否相等。
(3)交流:介绍你写成功的经验
引导:你是怎么根据左边的算式写出右边的算式的?
4、提示规律。
(1)提问:像这样的等式能写完吗?
(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。
板书:(a+b)xc=axc+bxc
(3)板书:乘法分配律
让学生用自己的语言说说这个字母式子表示什么,师小结。
三、巩固内化
1、在□里填上合适的数,在○里填上运算符号。
(42+35)×2=42×□+35×□
27×12+43×12=(27+□)×□
15×26+15×14=□○(□○□)
学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。
出示:72x(30+6)= 齐说答案。
出示:(25—12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结。
2、横着看,在得数相同的两个算式后面画“√”。
(48+52)×13 48×13+52×13 □
40×5+2×5 5×(40+2) □
75×(19+1) 75×19+75 □
40×50+50×90 40×(50+90) □
27×(16+30) 27×16+30 □
独立完成,小组讨论为什么有的是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?
出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。
四、总结回顾
通过今天这节课的学习,你有什么收获?
五、布置作业
1、必做题:想想做做第5题。
2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。
篇四十七:四年级《乘法分配律》的教学设计
教学目标:
1.学生在解决问题的过程中发现并理解乘法分配律,初步了解乘法分配律的应用。
2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。
教学重难点:
发现并理解乘法分配律。
教学准备:挂图、小黑板。
教学流程:
一、创设情境,导入新课。
师生谈话,引入主题图:老师准备为参加学校排球操比赛的五位同学去购买衣服。
看看买什么衣服好看呢。
二、自主探索,合作交流。
1.出示:买5件夹克衫和5条裤子,一共要付多少元?
师问你打算怎样算?
生口答师板书:
(65+45)×565×5+45×5
请学生分别说清两道算式的含义。
2.师问猜想一下,这两道算式的结果会怎样?
要验证我们的算式是否正确,应该用什么方法?
生计算,个别板演。
证明这两道算式的结果是相等的。
中间应用“=”接连。
3.生读算式(65+45)×5=65×5+45×5
师问等号两边的算式有什么相同和不同?
生同桌说一说,并汇报。
4.这两道算式相等是一种巧合还是有规律的呢?
出示:(2+10)×6=2×6+10×6
(5+6)×3=5×3+6×3
师问中间可以用“=”来连接吗?
5.小组讨论:这三组等式左边有什么特点?
右边有什么特点?
生汇报。
6.师问你能写出具有这样规律的等式吗?
生独立写一写,个别板书。
7.师问你能想出一道等式,可以把我们今天学习的所有具有这种规律的等式都包括在内吗?
生写一写,个别板演。
8.揭题:乘法分配律
(a+b)×c=a×c+b×c
9.师总结两个数的和乘一个数,等于这两个数分别去乘这一个数,再把两次乘得的积相加。
三、巩固练习,拓展应用。
想想做做:
1.在口里填上合适的数,在○里填上运算符号。
(42+35)×2=42×口+35×口
27×12+43×12=(27+口)×口
15×26+15×14=口○(口○口)
72×(30+6)=口○口○口○口
强调:乘法分配律,可以正着用,也可以反着用。
2.横着看,在得数相同的两个算式后面画“√”
(28+16)×728×7+16×7
15×39+45×39(15+45)×39
74×(20+1)74×20+74
40×50+50×9040×(50+90)
3.算一算,比一比,每组中哪一道题的计算比较简便。
(1)64×8+36×825×17+25×3
(64+36)×825×(17+3)
让学生体会乘法分配律可以使计算简便。
4.用两种不同的方法计算长方形菜地的周长,并说说它们之间的联系。
生独立完成并汇报。
5.你能根据下图列出两
道综合算式吗?
上面的两道算式能组成一个等式吗?
四、全课小结
师问今天你有什么收获?和你的小伙伴说一说。
五、课堂作业
《补充习题》第26页。
推荐站内搜索:南昌大学科学技术学院分数线、2013年成人高考考试时间、一篇周记湖南人事考试网打印准考证、公务员考试试题及答案、家里没关系千万别考公务员、成人考试报名、2018成人高考成绩查询、假如人类可以冬眠作文300字以上三年级、2013年成人高考考试时间、