《加法交换律和结合律》案例(精选4篇)
《加法交换律和结合律》案例 篇1
加法的交换律和结合律一课属于数的运算中的一个重要内容。是在学生经过较长时间的四则运算学习,对四则运算已有较多感性认识的基础上,结合一些实例,学习加法的运算律。学生从小学一年级开始,就在加法的计算中和演算中接触过这方面的知识,有较多的感性认识,这是学习加法交换律结合律的基础。
新教材安排这两个运算律都是从学生熟悉的实际问题的解答引入,让学生通过观察、比较和分析,找到实际问题不同解法之间的共同特点,初步感受运算规律。然后让学生根据对运算律的初步感知举出更多的例子,进一步分析、比较,发现规律,并先后用符号和字母表示出发现的规律,抽象、概括出运算律。
片断一:
师:谈话:天气渐渐凉了,我们学校也要组织大家进行冬锻炼比赛了,冬锻炼比赛有些啥项目呢?看,同学们正在紧张的训练呢。
(出示情境图),从图中你获得了哪些信息?你能提出哪些用加法计算的问题?
根据学生的回答,板书:1、参加跳绳活动的有多少人?
2、参加活动的女生有多少人?
3、参加活动的一共有多少人?
……
【反思】
从课堂的引入老师就以最贴近生活的冬天锻炼比赛为题,一下子激起了学生学习的“兴奋点”,学生提出了很多加法问题,进而很自然的进入了后面的学习。
片断二:
下面我们先来解决第一个问题,求跳绳的有多少人,怎么样列式计算?
指名口答,教师板书:28+17=45(人)
追问:还可以怎么样列式?在学生回答后,教师完成板书:17+28=45(人)
这两个算式都是求的啥?它们的结果怎样?那你能用一个符号把他们连接起来吗?(等号)板书:28+17=17+28,这是一个等式,我们一起来读一读。
仔细的观察一下这个等式,在等号的两边,啥地方相同,啥地方不同?
【反思】
在这样一个教师引导,学生进行比较、分析、举例、验证,表达的过程中,充分发挥了学生主体的作用,也让学生感受到了发现规律的一般过程,进而达到经历过程,讨论提升,归纳概括的目的。结合律的教学过程则更多的体现了学生自主探索,推导,验证的一个完整过程。
新教材的目标设定及教学过程,更多的体现了动态生成,寓数学思考,探究,发现于一体的数学活动过程,教师只有把握住了这个精髓才能去上好课,发展学生的综合能力。
《加法交换律和结合律》案例 篇2
教学设计
教学内容:苏教版国标本四年级(上)教材p56-58页内容
教学目标:
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交 换律和结合律。
2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解 决进行比较和分析,发现并概括出运算律。
3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:
使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:
使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。
课程资源的开发与利用:多媒体课件
教学过程:
一、 创设情境,初步感知
1、课前谈话(讲“朝三暮四”的故事)
听了这个故事,你想说些啥呢?(交换、不变)
2、情境引入
(1)谈话:同学们喜欢体育活动吗?谁来说说你最喜欢哪些体育活动?(自由说)
(2)媒体出示情境图,从图中你知道了哪些数学信息?(生自由说)
(3)师:你能提出用加法计算的问题吗?
①参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③跳绳的男生和踢毽子的女生一共有多少人
④参加活动的一共有多少人?
(2)我们先来解决第一个问题:参加跳绳的一共有多少人?
你们能马上口头列式并口算出结果吗?
指名回答,教师板书:28+17=45(人 ),追问:还有不同的算式吗?在学生回答后,教师完成板书:17+28=45(人)
观察比较这两个不同算式的计算结果。提问:你们发现了啥?
引导学生说出:28+17和17+28的结果都是45。
教师接着指出:这两道算式的得数相同,我们可以把这两道算式写成这样的等式。(板书:28+17=17+28)
(如果有学生说出这是加法交换律,就问你能说说啥是加法交换律吗?如果有学生说出:交换加数的位置和不变,就及时指出,我们不能根据一个例子就做出一般的结论,应该多举几个例子,多观察几组不同数目的算式,才能从中发现规律。)请学生根据这个等式完成第二个问题。下面请同学们汇报前置性作业第二题。
2、在列举中验证规律
象这样的等式你会写吗?试试看,越多越好。开始:汇报前置性作业第三题。
谁愿意来交流。
提问:你写了几个?说说看 。
根据学生回答,教师相机板书算式,
有没有比她多的 。
提问:指着板书,你们写的时候有没有啥规律?
学生能说到加数不变,交换位置,结果是一样的就行。
按照这样的规律,如果老师给你时间你还能写吗?
能写几个?无数个,写不完,用省略号表示(板书……)
3、在反思中概括规律
有这样规律的算式很多,写不完,谁能用一句话概括出这个规律。(四人一组讨论,然后交流。)用课件出示加法交换律的文字表术法。用语言表示加法交换律很长,也比较难记。你能用自己喜欢的办法把这个规律简明的表示出来吗?
需要合作的同学,可以四人小组合作。教师巡视搜集信息。
估计情况: 甲数+乙数=乙数+甲数,……
请同学起来交流:
如果没说到:假如我们用a来表示第一个加数,用b来表示第二个加数,那怎么样表示这个规律呢?板书:a+b=b+a。
小结:用图形,用字母,用文字来表示这类等式都起着相同的作用,简单明了的表示出这类等式的规律:(用手势比划)“交换两个加数的位置,和不变”。这一运算规律,我们称为“加法交换律”。习惯上,我们用小写字母表示加法交换律a+b=b+a。
指出:我们过去学过用交换加数的位置再加一遍的办法来验算加法,就是用了加法交换律。
5.看第二个问题,谁能马上列出算式,17+23,马上说出不同的算式?应用了?(加法交换律)
三、学习加法结合律。
1.在情境中感受规(请记得收藏本站-一路高升范文网,以获取更多新鲜内容)律
刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究“参加活动的一共有多少人?”看看我们有没有新的发现?
你们会列综合算式解决这个问题吗?再自备本上做,计算出结果。
交流:估计也学生列式28+17+23=68(人),你先算的是啥?(跳绳的人数)添上小括号表示强调先算,板书:(28+17)+23(人)
有没有不同的解法?估计有学生有列式28+(17+23)追问:这样列式先算的是啥?(女生人数)
如果还出现其他算式基本上都归为两种思路,先算跳绳的人数或先算女生的人数。
观察比较这两个不同算式的计算结果,引导学生说出计算结果是一样的,这两个算式也可以写成等式。生一起说,师板书:(28+17)+23=28+(17+23)
提问:它符合加法交换律吗?(不符合,加数的位置没变)
提问:加数的位置没变,那究竟加数的啥发生了变化呢?(相加的顺序不同)
引导学生一起说出:左边的算式是先把前两个加数相加,再加第三个数,右边的算式是先把后两个加数相加,再同第一个数相加。但他们的结果是一样的。
2、在计算中验证规律。
再来看这样两组算式:算一算,下面的ο 里能填上等号吗?汇报前置性作业第四题。
(45+25)+13ο45+(25+13)
(36+18)+22ο36+(18+22)
如果有学生直接回答结果是一样的,教师添上= 请学生分组验算。
学生回答,教师板书:(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
那现在老师来写个算式(28+46)+27=你能按照上面三个等式的规律写出等号后面的吗?
你还能写出类似的等式吗?汇报前置性作业第五题。
指名几个学生回答,追问:你是怎么想的?
回答要点:先算前两个加数的和和先算后两个加数的和的结果是一样的 。
有这样规律的算式多吗?板书……
3、揭示加法结合律
观察黑板上的几个等式,你能发现等号两边的算式啥没变?啥变了吗?
小组讨论:(要点:三个加数没变,加数的位置没变,运算顺序变了,结果没变)
提问:你们组发现了啥规律?谁来总结一下这个规律。这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。你能用a,b,c,表示加法结合律吗?这里的a,表示?b表示?c表示?
板书:(a+b)+c=a+(b+c)
跟老师一起读一遍。
指出:我们过去学过的加法的某些口算办法就是应用了加法结合律。比如:
9+7想:
=9+(1+6)
=(9+1)+6
=10+6
=16
三:巩固内化,拓展应用。
1、课件出示想想做做第1题。
师:下面的加法等式各应用了啥运算律?先说给同桌听听。
师:第一题运用了加法的交换律,第二、三题应用了加法的结合律,我们再来看最后一道等式,先运用了加法的交换律,交换加数48和25的位置,再应用了加法的结合律。所以在一道加法算式中,有时我们也可以同时应用两种运算律。
2、课件出示想想做做第2题:
师:请同学们在课本上独立完成以上填空题。再说说你是怎么样想的,为啥能这么填写。
师:第三、四两道算式 ,我们都可以有两种填法,一种是只用加法的结合律,一种是同时使用加法的交换律和结合律。
3、课件出示想想做做第4题。
师:下面我们进行一场比赛,老师这有4道题,每组做一道,比一比,哪一组做得最快。
(1)38+76+24 (3)(88+45)+12
(2)38+(76+24) (4)45+(88+12)
师:对于这样的比赛结果,你有啥话想说?
比较每组中的两道题有啥联系?哪道题计算更简便些?
师:通过计算,我们发现,每组两道算式中的第二道算式相对来说比较快,因为我们在计算时第一步都可以凑整,计算的结果是100。从中我们可以发现应用了加法的运算律可以使计算简便。
4、完成想想做做第5题
师:哪两片树叶上的和是100?连一连。想一想,怎么样的两个数相加和是100。
师:我们在找的时候,是先看个位上的数是几,然后再看哪一个数的个位上的数和它可以凑十,因为凑十是凑整的基础。比如75的个位上是5和25的个位上5可以凑十,然后再看两个数的十位上的数相加是否得九。7+2得9,再加上个位进上来的1,两个数相加的和就是100。在今后的计算中,同学们要做个有心人,在计算之前先观察一下,看看能否运用我们所学过的运算律,把能凑成整十、整百或整千的数先计算,这样可以使计算变得简便,有助于提高计算的速度和正确率。)
5、游戏:谈话:我们班有60位学生,那么老师就是班级中61号,老师想和班级中的9、19、29、39、49、59号交朋友。猜一猜老师为啥要和他们交朋友?(凑整,简便)
6、你想和班级中哪几号同学交朋友?
四、课堂总结
师:今天这节课,通过同学们的共同努力,我们一起认识了加法交换律和结合律,那么减法、乘法、除法有没有运算定律呢?今后我们再研究。不管学习啥内容,只要我们每一位同学都要相信自己能行,只要自己努力去学,就一定会学有所成。
板书设计:
加法的运算定律
加法交换律 加法结合律
28+17=45(人) 17+28=45(人) (28+17)+23 28+(17+23)
28+17=17+28 =45+23 =28+40
17+23=23+17 =68(人) =68(人)
学生汇报的算式 (28+17)+23=28+(17+23
(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
a+b=b+a (a+b)+c=a+(b+c)
《加法交换律和结合律》案例 篇3
教学参考书中对加法交换律和加法结合律是这样定义的:“在数学基础理论中,加法交换律和结合律通常是以集合论为依据加以证明的。此外,也可以用计数公理“计数的结果与计数的顺序无关”来说明:任意两个数a与b相加,不论是a+b(相当于先数a,再数b),还是b+a(相当于先数b,再数a),结果都一样。类似地,任意三个数相加,不论是先把前两个数相加,还是先把后两个数相加,仍然只是计数的顺序不同,所以不影响计数的结果。”
从这段文字中,我可以理解为:加法交换律和加法的结合律其本质是一样的,无论是计算顺序改变,还是计算结果改变,其本质是计算的结果没有发生改变。事实上,在简便计算中,加法的交换律和结合律经常是同时使用的。出于这样的理解,我在课堂上并不是非常的重视加法交换律和结合律之间的区别。由于自己对教材的理解偏差,学生作业本中有这样一道题目:根据56+72+28= 56+(72 +28,填空。呈现了以下的题目: + + = +( + )其实,题目的本意是要求学生根据加法结合律来填写,由于学生对加法交换律和加法结合律的本质区别没有完全弄清楚,因此学生的答案五花八门、错综复杂起来:答案一、12 +13 +14=14 +(12 +13 )答案二、12 +13 +14=13 +(12 +14)答案三、12 +13 +14=12 +(13+14 )。从这些答案中我们不难发现,学生想当然的认为,这个算式中的所有加数都是可以随便交换的,我想怎么交换就怎么交换,反正最后的和是不变的。当然从教参大范畴的定义来说也是无伤大雅的,但是呢作为我们初学加法的运算定律,这样模糊的教学是有欠妥当的。
当问题出现时,我们应该想办法去弥补,而不是寻找冠冕堂皇的借口。因此,我安排了以下环节:
1、 用一句话描述加法交换律和加法结合律。教师把学生口述的写在黑板上。
2、 用你喜欢的符号来表示加法交换律和加法结合律。教师板书在相应的文字下面。
3、 观察,说说你的新发现。通过观察,学生发现了它们的相同点和不同点,进而认识到加法加法结合律只是改变了运算的顺序,并没有改变加数的位置。
通过以上环节的比较,学生清楚地明白了,加法交换律和加法结合律之间的区别。进而更正了它们之前的错觉。
《加法交换律和结合律》案例 篇4
教学内容:
苏教版小学数学四年级上册p56-57例题及想想做做1~5题。
教学目标:
1、经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,感知加法运算律的价值,发展应用意识。
2、在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。
3、在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。
教学重点:使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:使学生经理探索加法结合律和交换律的过程,发现并概括出运算律。
教学准备:多媒体课件。
教学过程:
一、探索加法交换律
1、大家请看大屏幕,这些同学在进行体育锻炼,现在老师有个问题:跳绳的有多少人?应该怎么列式呢?指名回答,教师板书:28+17=45(人),追问:还可以怎么列?在学生回答后,教师完成板书:17+28 =45(人)
2、问:观察这两个算式,你有啥发现?这两道算式的得数怎样?可以用啥符号连接?板书:28+17=17+28
仔细地观察一下这个等式,在等号的两边,有啥相同?有啥不同?
3、你们能够象这样再说出几个类似的等式吗?根据学生回答,教师相机板书算式,并追问:说的对吗?我们来验证一下。(学生算等号左右两边的得数分别是多少)
问:这样的算式能写几个?(板书:省略号)
4、我们再仔细的观察这几个等式,你能不能用一句话说一说从中有啥发现?(小组交流)
同桌之间互相说一说,再指名汇报,学生发现规律:两个数相加,交换加数的位置,它们的和不变。
大家能不能用自己喜欢的符号、图形、字母等把发现的规律表示出来呢?在本子上试着写一写。指名回答。
5、大家都用自己的喜欢的方式表示了你们的发现,我们一般都用字母来表示这些规律,假如我们用a来表示第一个加数,用b来表示第二个加数,那这个规律该怎么样表示呢?板书:a+b=b+a。(学生读一遍)
6、教师指着板书指出:这个规律就是加法交换律(板书:加法交换律),也就是说:两个数相加,交换加数的位置,和不变,
7、其实加法交换律我们早就会用了,想想看,啥时候我们用过?
指出:在验算加法时用的就是加法交换律。
8、练习:想想做做第3题。
二、探索加法结合律
1、解答例题,观察比较
(1)你会解决这个问题吗?(多媒体出示问题:参加活动的一共有多少人?)
你打算先求啥?再求啥?指名回答。
①先算出跳绳的有多少人。
问:谁会列出综合算式?指名回答并板书:(28+17)+23
②先算出女生有多少人。板书:28+(17+23)
请大家把这两题的答案算出来。
这两道算式结果相同,我们可把它写成怎么样的等式?
指名回答并板书:(28+17)+23=28+(17+23)
(2)枚举归纳。
课件出示 :算一算,下面的 里能填上等号吗?
分4组每组计算一道。交流得数。
通过计算下面的 里能填上等号吗?
板书:(45+25)+13 = 45+(25+13)
(36+18)+22= 36+(18+22)
问:象这样的等式还有很多很多。(板书:省略号)
2、探索规律
(1)观察比较这些等式,并在小组之间讨论一下这些问题:
媒体出示:①仔细观察这三组等式的左边和右边,你能找到哪些啥相同点?有啥不同点?③从中你发现三个数相加,有啥规律呢?
(2)问:如果用a、b、c 表示三个加数,你能把上面的规律表示出来吗?
板书: (a+b)+c= a+(b+c) 读一遍。
这个规律就是“加法结合律”。(板书:加法结合律)
师指着板书小结:三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,它们的和不变。
刚才我们学习的加法交换律和加法结合律都是加法的运算律。加法的这些运算律在学习中经常能运用到。
三、巩固内化,拓展应用。
1、完成p58页“想想做做”第1题。
(1)出示题目。(课件)
(2)让学生说说每一个等式各应用了啥运算律。指名解答。
2、书本翻到58页 ,第二题,你能在 里填上合适的数吗?直接在书上填一填。
3、多媒体出示4道题,男生做第一组,女生做第二组。
38+76+24 (88+45)+12
38+(76+24) 45+(88+12)
4、第5题:连一连,哪两片树叶上的和是100?(课件演示)
四、全课总结,拓展延伸。
今天这节课我们学习了啥知识?能说说它们的具体内容吗?
推荐站内搜索:初中数学题库、河北省高等教育自学考试成绩查询、看阅兵仪式的观后感、未来的我 作文、公务员考试申论试题、考研报名网站考研准考证下载、信用社报名入口、国家公务员考试试题及答案、自学考试查询、